

CITY OF OWOSSO PLANNING COMMISSION Regular Meeting Monday, October 28, 2024 at 6:30 p.m. AGENDA

- A. CALL TO ORDER
- B. PLEDGE OF ALLEGIANCE
- C. ROLL CALL
- D. APPROVAL OF AGENDA October 28, 2024
- E. APPROVAL OF MINUTES April 22, 2024
- F. ELECTION OF OFFICERS
- G. PUBLIC HEARINGS:
- H. SITE PLAN REVIEWS:
 - 1. 900 Ada and 901 N Shiawassee (Master Plan Implementation Goals: 1.24, 1.25)
- I. ITEMS OF BUSINESS:
- J. COMMISSIONER/CITIZEN COMMENTS:
- K. ADJOURNMENT

Next regular meeting will be on Monday, November 25, 2024 at 6:30 p.m.

The City of Owosso will provide necessary reasonable auxiliary aids and services, such as signers for the hearing impaired and recordings of printed materials being considered at the meeting, to individuals with disabilities at the meeting/hearing upon seventy-two (72) hours' notice to the City of Owosso. Individuals with disabilities requiring auxiliary aids or services should contact the City of Owosso by writing or calling the following: Amy Kirkland, City Clerk, 301 W. Main St, Owosso, MI 48867 (989) 725-0500. The City of Owosso website is: www.ci.owosso.mi.us

MINUTES REGULAR MEETING OF THE OWOSSO PLANNING COMMISSION Monday, April 22, 2024 – 6:30 P.M.

<u>CALL TO ORDER:</u> Chairman Wascher called the meeting to order at 6:30 p.m.

PLEDGE OF ALLEGIANCE: Recited

ROLL CALL: Tanya Buckelew

MEMBERS PRESENT: Secretary Fear, Commissioner Law, Vice-Chair Livingston,

Commissioners Martin, Robertson, Schlaack, Taylor, and Chairman

Wascher

MEMBERS ABSENT: Commissioner Owens

OTHERS PRESENT: Tanya Buckelew, Planning & Building Director; Hannah Smith, CIB

Planning

APPROVAL OF AGENDA:

MOTION BY COMMISSIONER TAYLOR, SUPPORTED BY VICE-CHAIR LIVINGSTON TO APPROVE THE AGENDA FOR April 22, 2024.

YEAS ALL. MOTION CARRIED.

APPROVAL OF MINUTES:

MOTION BY VICE-CHAIR LIVINGSTON SUPPORTED BY COMMISSIONER TAYLOR TO APPROVE THE MINUTES FOR THE March 25, 2024 MEETING.

YEAS ALL. MOTION CARRIED.

PUBLIC HEARING: None

SITE PLAN REVIEW:

1. SITE PLAN REVIEW FOR FOR WASHINGTON PARK

Hannah Smith, CIB Planning, outlined the review from the City Planner Justin Sprague, noting two items will, if approved, require waivers from the Planning Commission.

- 1. Parking Spaces 34 are required and 32 are proposed
- 2. Driveway Spacing 130' is required and 87' is proposed

The plan is to build a multi-family residential development, consisting of two, eight-unit apartments building, one building roughly 4,785 square feet and the other roughly 5,000 square feet. Parking would be internal to the property, located behind the development, to be accessed from both N. Washington Street and W. Wesley Drive. Site improvements to include landscaping, leaving the wetlands on the west side of the property undisturbed. The property is zoned RM, Multi-Family Residential and this use is permitted.

Review Comments

- **1. Information items.** The site plan generally meets the informational requirements of the ordinance.
- **2. Proposed uses.** Development of two, eight-unit, two-story multi-family apartment buildings as permitted by the City of Owosso Ordinance.
- **3. Area and Bulk.** The proposed site was reviewed in accordance with Section 38-87, as described in the following table.

	Required	Provided	Comments
Washington Park			
(RM Zoning) Building 1 (Units 1 – 8)			
Front yard building setback	10 ft.	10 ft.	In compliance
Side yard setback	5 ft.	5 ft.	In compliance
Rear yard building setback	20 ft.	20 ft.	In compliance
Maximum building height	2 stories (35 ft.)	2 stories	In compliance
Washington Park			
(FM Zoning) Building 2 (Units 9 – 16)			
Front yard building setback	10 ft.	10 ft.	In compliance
Side yard setback	5 ft.	5 ft.	In compliance
Rear yard building setback	20 ft.	20 ft.	In compliance
Maximum building height	2 stories (35 ft.)	2 stories	In compliance

- 4. **Building Design & Materials.** The ordinance states that durable building materials which provide an attractive, quality appearance must be utilized. While the proposed building materials appear to meet the ordinance standards, materials have not been submitted demonstrating that they are consistent with the City of Owosso Zoning Ordinance.
- 5. **Building Height.** The proposed building complies with the maximum building height.
- 6. **Mechanical Units.** The Zoning Ordinance requires that all exterior mechanical equipment be screened. The applicant appears to show 16 A/C units, one at the rear of each apartment unit, to be screened by shrubs.
- 7. **Dumpster**. The proposed dumpster enclosure is a concrete pad with concrete block walls. The gate is not specified on the site plan. Per the City of Owosso Zoning Ordinance, Section 38-63, "the enclosure shall be constructed of brick or decorative concrete block material, consistent with the building materials of the principal building". The gate must be made of vinyl or other high-quality material. Applicant also needs to provide dimensions of the dumpster enclosure on the plan.
- 8. **Site Lighting.** Proposed lighting is in compliance with the Zoning Ordinance.
- 9. **Parking Lot Requirements.** The parking requirements for multiple-family residential units is 2.0 spaces per unit with two bedrooms and 2.5 spaces per unit with three or more bedrooms. The applicant proposes 3, 3-bedroom units and 13, 2-bedroom units which would require 33.5 parking spaces. The applicant is proposing 30, 9' x 20' parking spaces and 2 barrier-free parking spaces for a total of 32.
- 10. **Landscaping.** The landscaping plan is in compliance with the ordinance.
- 11. **Driveway Spacing.** Section 38-206 of the Zoning Ordinance requires a separation of 130-feet from other driveways on the same side of the street. The proposed Washington Street driveway will only be 87-feet north of an existing driveway and does not meet the requirements of this section of the ordinance. Section 38-201(4) however gives the Planning Commission the ability to provide a waiver of this requirement if specific conditions apply. The applicant will need to demonstrate that the following conditions are met for the site to be eligible for a waiver to be approved by the Planning Commission.
 - a. Size of the parcel is insufficient to meet the dimensional standards.

- b. The spacing of existing, adjacent driveways or environmental constraints prohibit adherence to the access standards at a reasonable cost.
- c. The use will generate less than 500 total vehicle trips per day or less than 75 total vehicle trips in the peak hour of travel on the adjacent street, based on the most recent rates developed by the Institute of Transportation Engineers (ITE).
- d. There are no other reasonable means of access.
- 12. **Other Approvals**. The proposed site plan must be reviewed and approved by the appropriate city departments, consultants, and agencies.

Based upon the above comments, we recommend approval of the Washington Park Site Plan, conditioned upon the following:

- 1. Submission of a revised site plan that satisfactorily addresses the items in this letter, for administrative review and approval;
- 2. That the Planning Commission determines if the number of parking spaces is acceptable and approves a waiver for the fewer number of parking spaces;
- 3. That building materials are provided to determine compliance with the ordinance;
- 4. That the dumpster enclosure materials are acceptable and that the plans be revised to include enclosure dimensions:
- 5. That the Planning Commission determines if a the site is eligible for a waiver from Section 38-206 for driveway spacing;
- 6. Review and approval by the appropriate city departments, consultants, and agencies prior to issuance of a building permit.

David Christian, DC Engineering, followed with additional comments on the site plan. Thirty-two parking spaces would be sufficient, as this is low rent housing and not expecting a lot of traffic. Same with driveway spacing. A recent traffic study was performed with the results of 114 trips per day – considered low volume. If the driveway were pushed any further north, it would eliminate the ability to construct the second building.

Commissioner Robertson left the meeting at 7:40 p.m.

MOVED BY COMMISSIONER SCHLAACK SUPPORTED BY VICE-CHAIR LIVINGSTON TO APPROVE THE SITE PLAN REVIEW FOR WASHINGTON PARK TO ALLOW FOR TWO TOWNHOMES WITH EIGHT UNITS EACH, ANY REVISIONS TO THE SITE PLAN TO BE APPROVED ADMINISTRATIVELY BY APPROPRIATE CITY DEPARTMENTS PRIOR TO ISSUANCE OF A BUILDING PERMIT, TO APPROVE THE VARIANCES TO ALLOW FOR 32 PARKING SPACES INSTEAD OF 34 AND ALLOW THE DRIVEWAY WIDTH TO BE 87 FEET INSTEAD OF 130 FEET.

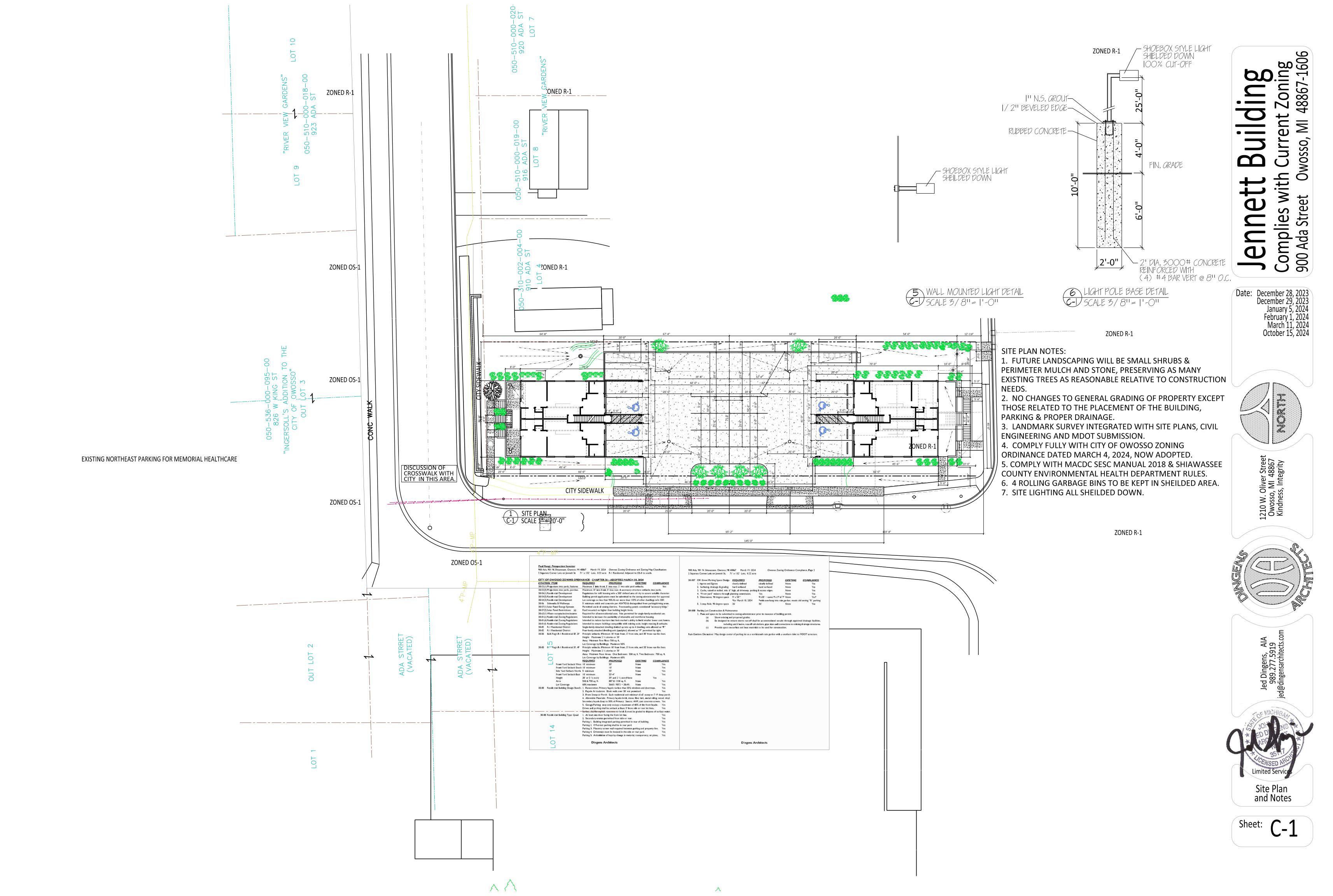
YEAS: COMMISSIONER LAW, VICE-CHAIR LIVINGSTON, COMMISSIONERS

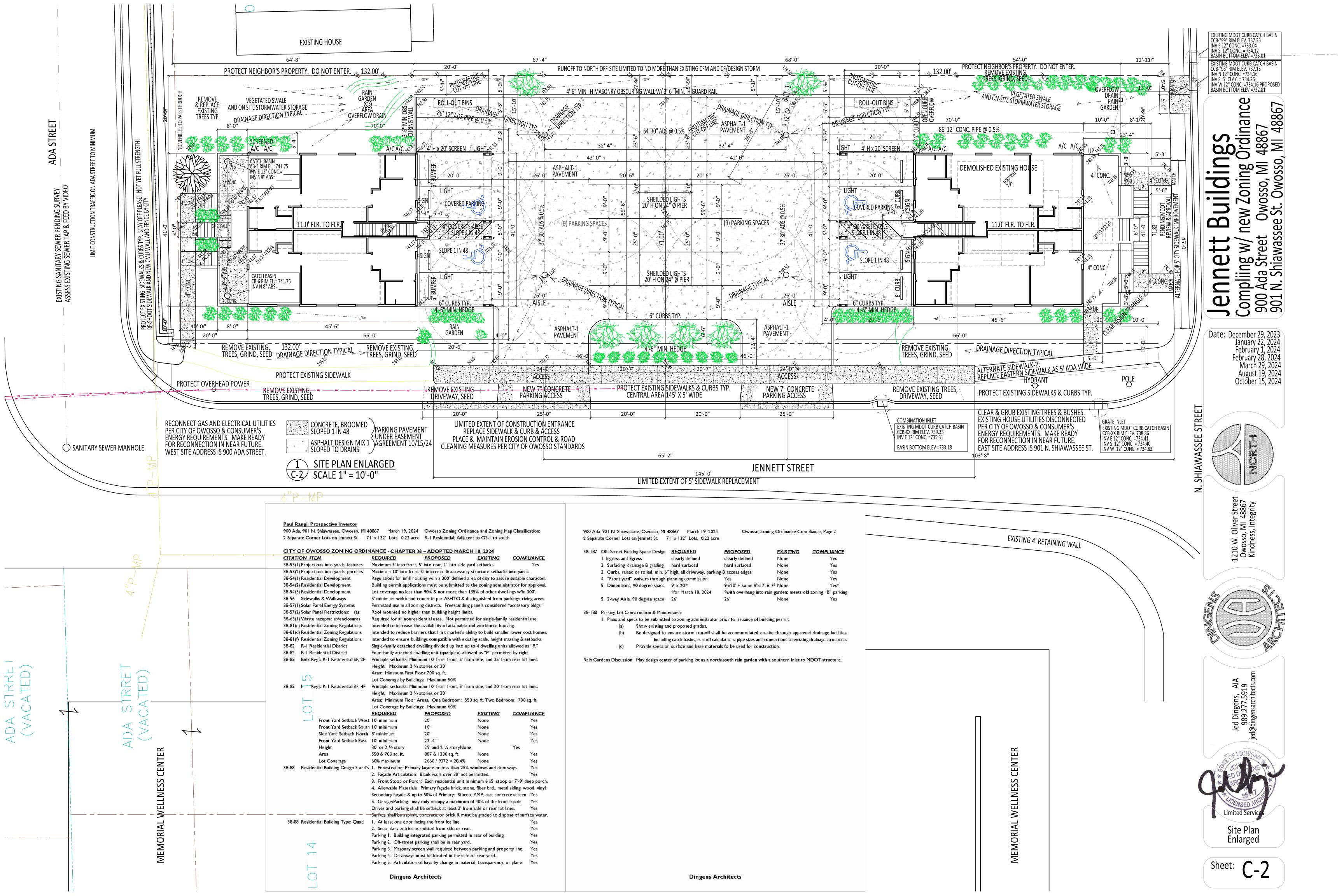
SCHLAACK, TAYLOR, SECRETARY FEAR AND CHAIRMAN WASCHER

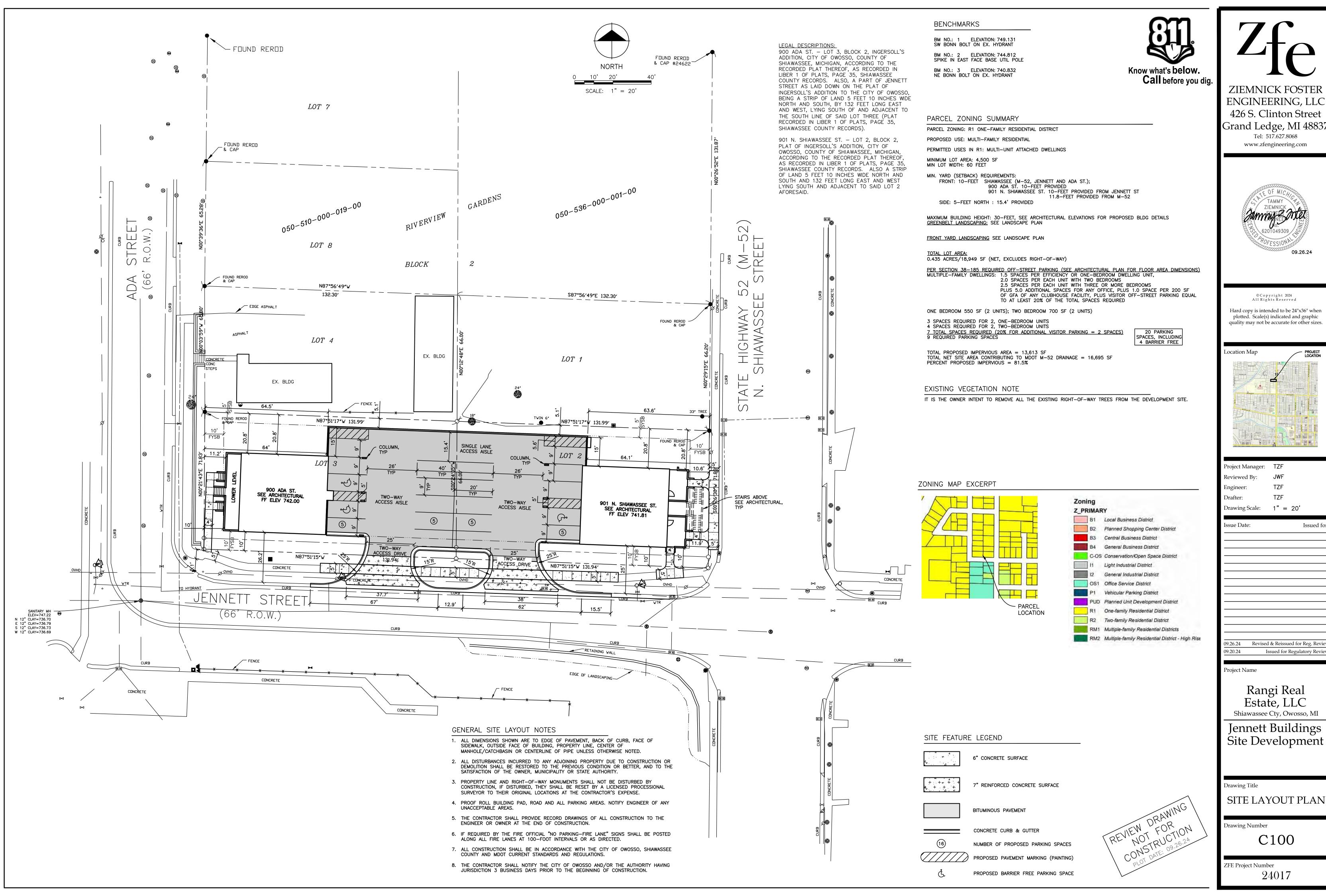
NAYS: NONE

ABSTAINED: COMMISSIONER MARTIN

RCV MOTION CARRIED


COMMISSIONER/CITIZEN COMMENTS:


Discussions were held regarding drainage, the units proposed versus the previous Bailey Park project, what the buildings will look like and traffic.


ADJOURNMENT:

MOTION BY COMMISSIONER I	MARTIN SUPPORTED BY VICE-CHAIR LIVINGSTON TO ADJOURN
AT 7:15 PM UNTIL THE NEXT I	MEETING ON MAY 28, 2024.

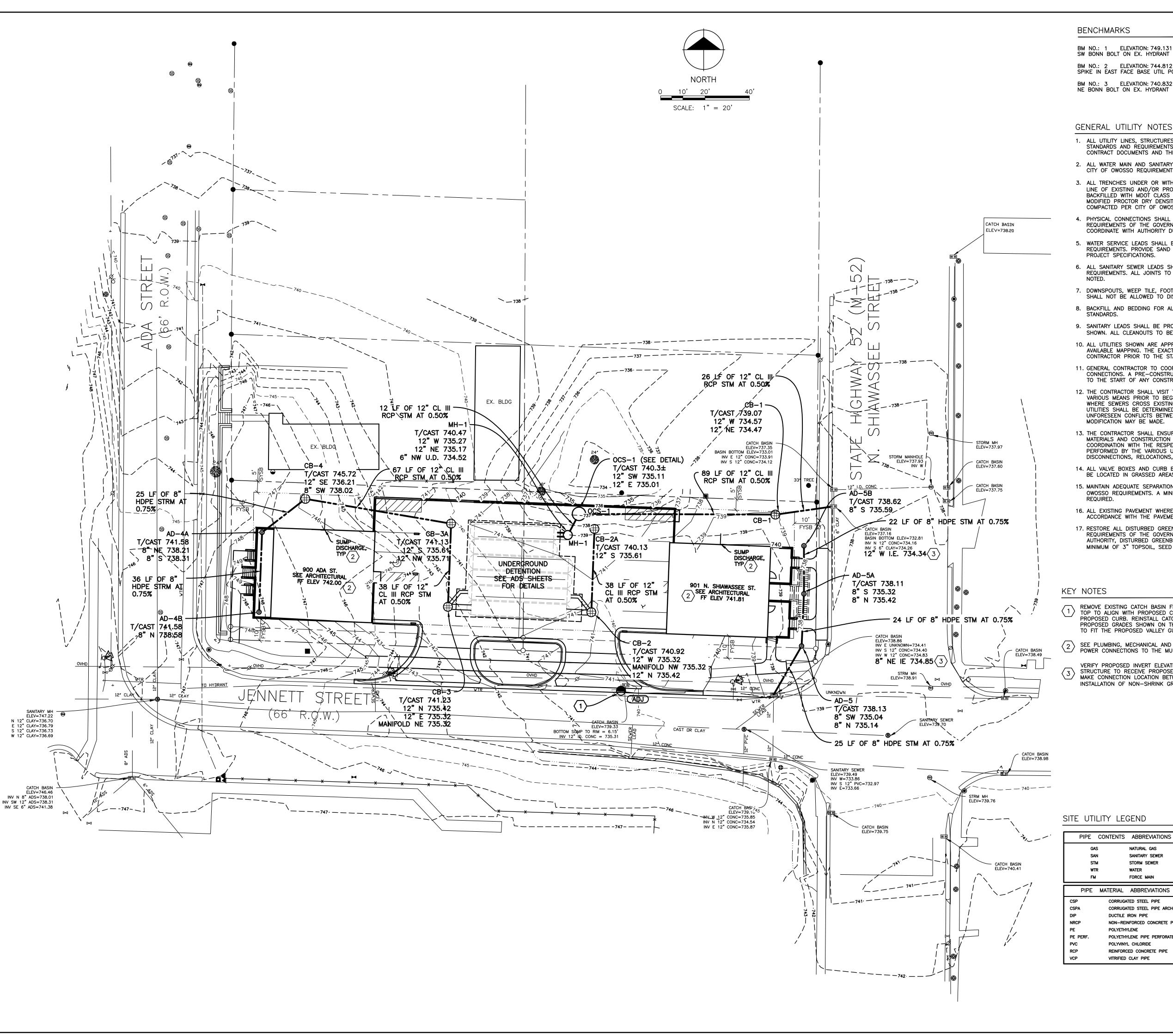
YEAS ALL, MOTION CARRIED	
	Janae Fear, Secretary

ZIEMNICK FOSTER

ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837

www.zfengineering.com

plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.


Issued fo

Issued for Regulatory Review

Estate, LLC Shiawassee Cty, Owosso, MI

Jennett Buildings Site Development

SITE LAYOUT PLAN

BM NO.: 1 ELEVATION: 749.13 SW BONN BOLT ON EX. HYDRANT BM NO.: 2 ELEVATION: 744.812 SPIKE IN EAST FACE BASE UTIL POLE BM NO.: 3 ELEVATION: 740.832

GENERAL UTILITY NOTES

- 1. ALL UTILITY LINES, STRUCTURES AND TRENCHES SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE STANDARDS AND REQUIREMENTS OF THE MICHIGAN DEPT. OF TRANSPORTATION, CITY OF OWOSSO AND THE CONTRACT DOCUMENTS AND THE SHIAWASSEE COUNTY HEALTH DEPARTMENT FOR SOIL EROSION PERMITTING.
- 2. ALL WATER MAIN AND SANITARY SEWER IMPROVEMENTS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE CITY OF OWOSSO REQUIREMENTS.
- 3. ALL TRENCHES UNDER OR WITHIN THREE (3) FEET OR THE FORTY-FIVE (45) DEGREE ZONE OF INFLUENCE LINE OF EXISTING AND/OR PROPOSED PAVEMENT, BUILDING PAD OR DRIVE APPROACH, ETC. SHALL BE BACKFILLED WITH MDOT CLASS II SAND COMPACTED TO A T LEAST 95 PERCENT OF THE MAXIMUM MODIFIED PROCTOR DRY DENSITY IN ACCORDANCE WITH ASTM D1557. ALL OTHER TRENCHES TO BE COMPACTED PER CITY OF OWOSSO REQUIREMENTS.
- PHYSICAL CONNECTIONS SHALL NOT BE MADE TO WATER OR SANITARY LINES WITHOUT MEETING THE REQUIREMENTS OF THE GOVERNING AUTHORITY FOR TESTING, OBSERVATION, ETC. CONTRACTOR MUST COORDINATE WITH AUTHORITY DURING CONSTRUCTION.
- 5. WATER SERVICE LEADS SHALL BE TYPE "K" ANNEALED SEAMLESS COPPER PER CITY OF OWOSSO REQUIREMENTS. PROVIDE SAND BEDDING AND COMPACTED SAND BACKFILL PER CITY REQUIREMENT AND
- 6. ALL SANITARY SEWER LEADS SHALL BE SDR 25 PVC AND FITTINGS INSTALLED AT A MINIMUM 1% PER CITY REQUIREMENTS. ALL JOINTS TO BE ELASTOMERIC GASKET JOINTS PER ASTM D3034 UNLESS OTHERWISE
- 7. DOWNSPOUTS, WEEP TILE, FOOTING DRAINS OR ANY CONDUIT THAT CARRIES STORM OR GROUND WATER SHALL NOT BE ALLOWED TO DISCHARGE INTO A SANITARY SEWER.
- 8. BACKFILL AND BEDDING FOR ALL SEWERS LEADS SHALL BE IN ACCORDANCE WITH CITY OF OWOSSO
- 9. SANITARY LEADS SHALL BE PROVIDED WITH CLEANOUTS AT EVERY BEND AND ALONG PIPE RUNS ASH SHOWN. ALL CLEANOUTS TO BE PROVIDED WITH EJIW #1565 BOX OR APPROVED EQUAL.
- 10. ALL UTILITIES SHOWN ARE APPROXIMATE LOCATIONS ONLY AND HAVE BEEN COMPILED FROM THE LATEST AVAILABLE MAPPING. THE EXACT LOCATION OF ALL UNDERGROUND UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO THE START OF CONSTRUCTION.
- 11. GENERAL CONTRACTOR TO COORDINATE WITH THE LOCAL UTILITY COMPANIES FOR ALL LOCATIONS AND CONNECTIONS. A PRE-CONSTRUCTION MEETING WITH THE VARIOUS UTILITY PROVIDERS IS REQUIRED PRIOR
- 12. THE CONTRACTOR SHALL VISIT THE SITE AND VERIFY THE ELEVATION AND LOCATION OF ALL UTILITIES BY VARIOUS MEANS PRIOR TO BEGINNING ANY EXCAVATION. TEST PITS SHALL BE DUG AT ALL LOCATIONS WHERE SEWERS CROSS EXISTING UTILITIES, AND THE HORIZONTAL AND VERTICAL. LOCATIONS OF THE UTILITIES SHALL BE DETERMINED. THE CONTRACTOR SHALL CONTACT THE ENGINEER IN THE EVENT OF ANY UNFORESEEN CONFLICTS BETWEEN EXISTING AND PROPOSED UTILITIES SO THAT AN APPROPRIATE MODIFICATION MAY BE MADE.
- 13. THE CONTRACTOR SHALL ENSURE THAT ALL UTILITY COMPANIES AND MUNICIPALITY STANDARDS FOR MATERIALS AND CONSTRUCTION METHODS ARE MET. THE CONTRACTOR SHALL PERFORM PROPER COORDINATION WITH THE RESPECTIVE UTILITY COMPANY. THE CONTRACTOR SHALL COORDINATE WORK TO BE PERFORMED BY THE VARIOUS UTILITY COMPANIES AND SHALL PAY ALL FEES FOR CONNECTIONS, DISCONNECTIONS, RELOCATIONS, INSPECTIONS, AND DEMOLITION.
- 14. ALL VALVE BOXES AND CURB BOXES SHALL BE ADJUSTED TO THE FINAL GRADES. ALL CURB BOXES SHALL BE LOCATED IN GRASSED AREAS UNLESS OTHERWISE NOTED ON THE PLANS.
- 15. MAINTAIN ADEQUATE SEPARATION BETWEEN SANITARY AND WATER SERVICES IN ACCORDANCE WITH CITY OF OWOSSO REQUIREMENTS. A MINIMUM OF 10' OF HORIZONTAL AND 18" OF VERTICAL SEPARATION IS
- 16. ALL EXISTING PAVEMENT WHERE UTILITY PIPING IS TO BE INSTALLED SHALL BE SAW CUT AND REPLACED IN ACCORDANCE WITH THE PAVEMENT REPAIR REQUIREMENTS OF THE GOVERNING AUTHORITY.
- 17. RESTORE ALL DISTURBED GREENBELT AREAS TO PRE-CONSTRUCTION CONDITION IN ACCORDANCE WITH THE REQUIREMENTS OF THE GOVERNING AUTHORITY. UNLESS OTHERWISE INDICATED BY THE GOVERNING AUTHORITY, DISTURBED GREENBELTS AREAS SHALL BE GRADED TO PROVIDE POSITIVE DRAINAGE AND A MINIMUM OF 3" TOPSOIL, SEED AND MULCH APPLIED.
- REMOVE EXISTING CATCH BASIN FLAT TOP SECTION. SPIN ECCENTRIC OPENING ON THE EX. FLAT TOP TO ALIGN WITH PROPOSED CURB ALIGNMENT. REINSTALL IN NEW ORIENTATION TO ALIGN WITH PROPOSED CURB. REINSTALL CATCH BASIN CASTING IN PROPOSED CURBLINE ALIGNMENT TO PROPOSED GRADES SHOWN ON THE GRADING PLAN. INSTALL A NEW CATCH BASIN CASTING BACK TO FIT THE PROPOSED VALLEY GUTTER PROFILE.
- SEE PLUMBING, MECHANICAL AND ELECTRICAL PLANS (BY OTHERS) FOR SANITARY, WATER AND POWER CONNECTIONS TO THE MUNICIPAL UTILITY SYSTEMS.
- VERIFY PROPOSED INVERT ELEVATION PRIOR TO PIPE INSTALLATION. CORE EX. PRECAST STORM STRUCTURE TO RECEIVE PROPOSED UTILITY. FOLLOWING INSTALLATION OF PROPOSED UTILITY PIPE, MAKE CONNECTION LOCATION BETWEEN PIPE AND EXISTING STRUCTURE WATER TIGHT BY INSTALLATION OF NON-SHRINK GROUT (MINIMUM).

GAS	3	NATURAL GAS
SAN	I	SANITARY SEWER
STM	ı	STORM SEWER
WTF	₹	WATER
FM		FORCE MAIN
PIPE	MATERIAL	ABBREVIATIONS
CSP	CORRUGA	TED STEEL PIPE
CSPA	CORRUGA	TED STEEL PIPE ARCH
DIP	DUCTILE	IRON PIPE
NRCP	NON-REI	NFORCED CONCRETE PIPE
PE	POLYETH	/LENE
PE PERF.	POLYETH	LENE PIPE PERFORATED
PVC	POLYVINY	L CHLORIDE
RCP	REINFORG	CED CONCRETE PIPE

12" STM STORM SEWER & MANHOLE CATCH BASIN 6" U.D. UNDERDRAIN

> (ADJ) ADJUST EX. STRUCTURE CASTINGS

> > , CONSTRUCTION ,

ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837 Tel: 517.627.8068

www.zfengineering.com

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Reviewed By: Drafter: 1" = 20'Drawing Scale:

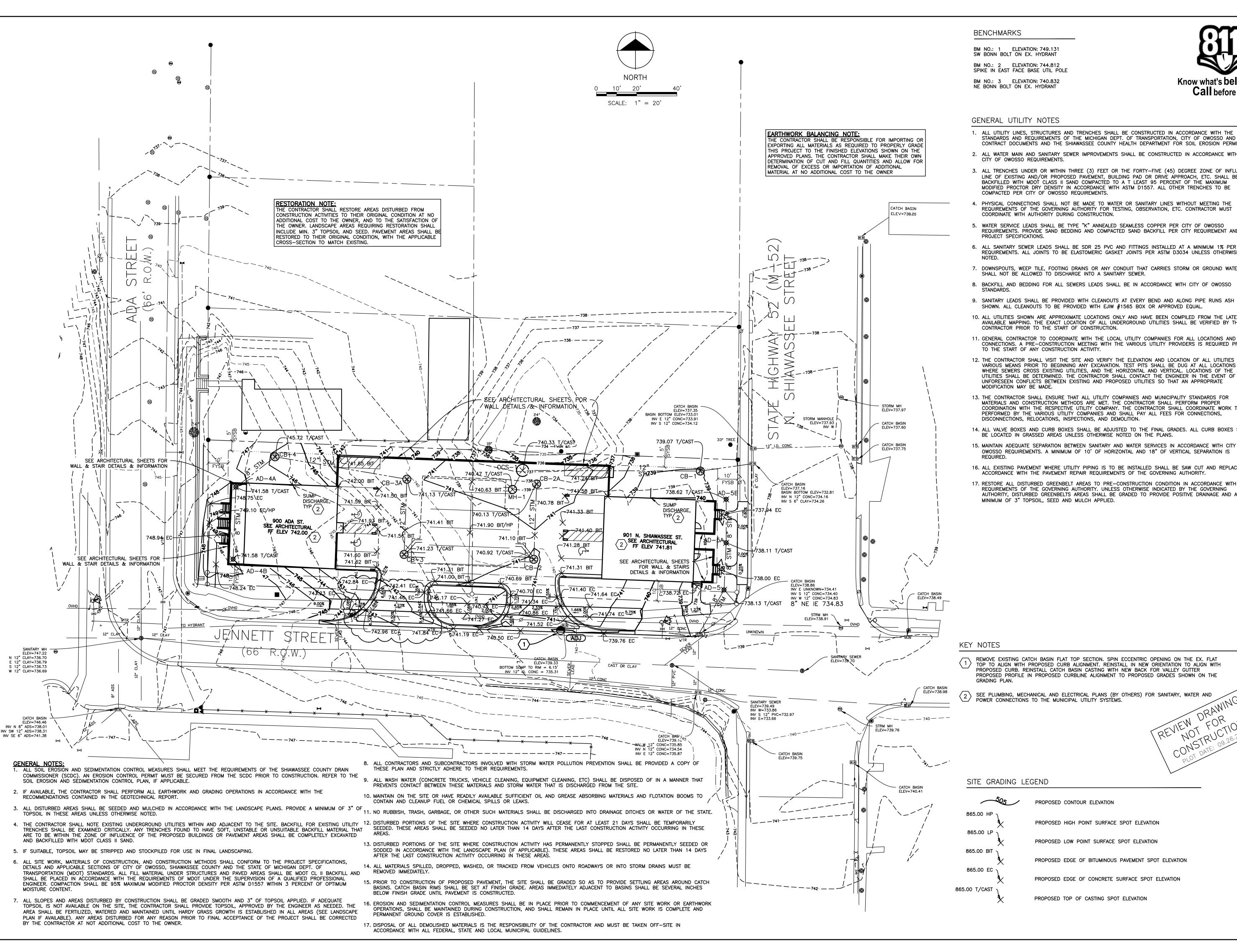
> ssue Date: Issued fo

09.26.24 Revised & Reissued for Reg. Review Issued for Regulatory Review

Project Name

Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI

Jennett Buildings Site Development


Drawing Title

SITE UTILITY PLAN

C101

24017

Drawing Number

BM NO.: 1 ELEVATION: 749.13 SW BONN BOLT ON EX. HYDRANT BM NO.: 2 ELEVATION: 744.812 SPIKE IN EAST FACE BASE UTIL POLE BM NO.: 3 ELEVATION: 740.832

GENERAL UTILITY NOTES

- STANDARDS AND REQUIREMENTS OF THE MICHIGAN DEPT. OF TRANSPORTATION, CITY OF OWOSSO AND THE CONTRACT DOCUMENTS AND THE SHIAWASSEE COUNTY HEALTH DEPARTMENT FOR SOIL EROSION PERMITTING.
- 2. ALL WATER MAIN AND SANITARY SEWER IMPROVEMENTS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE CITY OF OWOSSO REQUIREMENTS.
- 3. ALL TRENCHES UNDER OR WITHIN THREE (3) FEET OR THE FORTY-FIVE (45) DEGREE ZONE OF INFLUENCE LINE OF EXISTING AND/OR PROPOSED PAVEMENT, BUILDING PAD OR DRIVE APPROACH, ETC. SHALL BE BACKFILLED WITH MDOT CLASS II SAND COMPACTED TO A T LEAST 95 PERCENT OF THE MAXIMUM MODIFIED PROCTOR DRY DENSITY IN ACCORDANCE WITH ASTM D1557. ALL OTHER TRENCHES TO BE COMPACTED PER CITY OF OWOSSO REQUIREMENTS.
- PHYSICAL CONNECTIONS SHALL NOT BE MADE TO WATER OR SANITARY LINES WITHOUT MEETING THE REQUIREMENTS OF THE GOVERNING AUTHORITY FOR TESTING, OBSERVATION, ETC. CONTRACTOR MUST COORDINATE WITH AUTHORITY DURING CONSTRUCTION.
- 5. WATER SERVICE LEADS SHALL BE TYPE "K" ANNEALED SEAMLESS COPPER PER CITY OF OWOSSO REQUIREMENTS. PROVIDE SAND BEDDING AND COMPACTED SAND BACKFILL PER CITY REQUIREMENT AND
- 6. ALL SANITARY SEWER LEADS SHALL BE SDR 25 PVC AND FITTINGS INSTALLED AT A MINIMUM 1% PER CITY REQUIREMENTS. ALL JOINTS TO BE ELASTOMERIC GASKET JOINTS PER ASTM D3034 UNLESS OTHERWISE
- 7. DOWNSPOUTS, WEEP TILE, FOOTING DRAINS OR ANY CONDUIT THAT CARRIES STORM OR GROUND WATER SHALL NOT BE ALLOWED TO DISCHARGE INTO A SANITARY SEWER.
- 8. BACKFILL AND BEDDING FOR ALL SEWERS LEADS SHALL BE IN ACCORDANCE WITH CITY OF OWOSSO
- 9. SANITARY LEADS SHALL BE PROVIDED WITH CLEANOUTS AT EVERY BEND AND ALONG PIPE RUNS ASH SHOWN. ALL CLEANOUTS TO BE PROVIDED WITH EJIW #1565 BOX OR APPROVED EQUAL.
- 10. ALL UTILITIES SHOWN ARE APPROXIMATE LOCATIONS ONLY AND HAVE BEEN COMPILED FROM THE LATEST AVAILABLE MAPPING. THE EXACT LOCATION OF ALL UNDERGROUND UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO THE START OF CONSTRUCTION.
- 11. GENERAL CONTRACTOR TO COORDINATE WITH THE LOCAL UTILITY COMPANIES FOR ALL LOCATIONS AND CONNECTIONS. A PRE-CONSTRUCTION MEETING WITH THE VARIOUS UTILITY PROVIDERS IS REQUIRED PRIOR
- 12. THE CONTRACTOR SHALL VISIT THE SITE AND VERIFY THE ELEVATION AND LOCATION OF ALL UTILITIES BY VARIOUS MEANS PRIOR TO BEGINNING ANY EXCAVATION. TEST PITS SHALL BE DUG AT ALL LOCATIONS WHERE SEWERS CROSS EXISTING UTILITIES, AND THE HORIZONTAL AND VERTICAL. LOCATIONS OF THE UTILITIES SHALL BE DETERMINED. THE CONTRACTOR SHALL CONTACT THE ENGINEER IN THE EVENT OF ANY UNFORESEEN CONFLICTS BETWEEN EXISTING AND PROPOSED UTILITIES SO THAT AN APPROPRIATE MODIFICATION MAY BE MADE.
- 13. THE CONTRACTOR SHALL ENSURE THAT ALL UTILITY COMPANIES AND MUNICIPALITY STANDARDS FOR MATERIALS AND CONSTRUCTION METHODS ARE MET. THE CONTRACTOR SHALL PERFORM PROPER COORDINATION WITH THE RESPECTIVE UTILITY COMPANY. THE CONTRACTOR SHALL COORDINATE WORK TO BE PERFORMED BY THE VARIOUS UTILITY COMPANIES AND SHALL PAY ALL FEES FOR CONNECTIONS, DISCONNECTIONS, RELOCATIONS, INSPECTIONS, AND DEMOLITION.
- 14. ALL VALVE BOXES AND CURB BOXES SHALL BE ADJUSTED TO THE FINAL GRADES. ALL CURB BOXES SHALL BE LOCATED IN GRASSED AREAS UNLESS OTHERWISE NOTED ON THE PLANS.
- 15. MAINTAIN ADEQUATE SEPARATION BETWEEN SANITARY AND WATER SERVICES IN ACCORDANCE WITH CITY OF OWOSSO REQUIREMENTS. A MINIMUM OF 10' OF HORIZONTAL AND 18" OF VERTICAL SEPARATION IS
- 16. ALL EXISTING PAVEMENT WHERE UTILITY PIPING IS TO BE INSTALLED SHALL BE SAW CUT AND REPLACED IN ACCORDANCE WITH THE PAVEMENT REPAIR REQUIREMENTS OF THE GOVERNING AUTHORITY.
- 17. RESTORE ALL DISTURBED GREENBELT AREAS TO PRE-CONSTRUCTION CONDITION IN ACCORDANCE WITH THE REQUIREMENTS OF THE GOVERNING AUTHORITY. UNLESS OTHERWISE INDICATED BY THE GOVERNING AUTHORITY, DISTURBED GREENBELTS AREAS SHALL BE GRADED TO PROVIDE POSITIVE DRAINAGE AND A MINIMUM OF 3" TOPSOIL, SEED AND MULCH APPLIED.

- REMOVE EXISTING CATCH BASIN FLAT TOP SECTION. SPIN ECCENTRIC OPENING ON THE EX. FLAT TOP TO ALIGN WITH PROPOSED CURB ALIGNMENT. REINSTALL IN NEW ORIENTATION TO ALIGN WITH PROPOSED CURB. REINSTALL CATCH BASIN CASTING WITH NEW BACK FOR VALLEY GUTTER PROPOSED PROFILE IN PROPOSED CURBLINE ALIGNMENT TO PROPOSED GRADES SHOWN ON THE
- SEE PLUMBING, MECHANICAL AND ELECTRICAL PLANS (BY OTHERS) FOR SANITARY, WATER AND POWER CONNECTIONS TO THE MUNICIPAL UTILITY SYSTEMS.

SITE GRADING LEGEND

ZIEMNICK FOSTER ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837

Tel: 517.627.8068 www.zfengineering.com

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Reviewed By Drawing Scale:

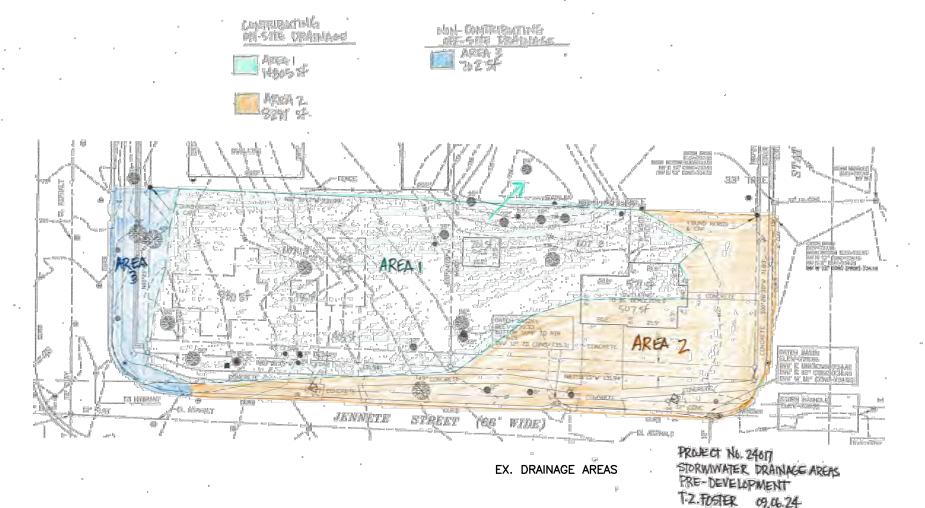
Issued fo

0.16.24 Revised West Jennett Driveway Grad Revised & Reissued for Reg. Revie

Issued for Regulatory Revie

Project Name

Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI


Jennett Buildings Site Development

Drawing Title

SITE GRADING PLAN

Drawing Number

C102

ALLOWABLE SITE DISCHARGE CALCULATION SUMMARY

Existing Site Allowable Discharge (Qallowable) Calculations

Discharge to Prop. N. of Site Area 1 0.340 ac 14,805 si
Discharge to M-52 R.O.W. Area 2 0.190 ac 8,281 si
0.530 ac

Ex C_{1 Value} 0.661 Area 1

Ex C_{2 Value} 0.676 Area 2

Calculate Existing Allowable Discharge per Section 111.A of 2015 Stormwater Management Requirements

I = Variable based on a. and b. below Q_{allowable} = c*I*A a. <math>I = 0.20 cfs/acre OR

Q_{allowable} = lesser of the calculated values

b. I = Recurrent Interval Design Storm
100-year, 24-hour storm (5.20 inches)

Existing Area 1 of Discharge (North of Property)

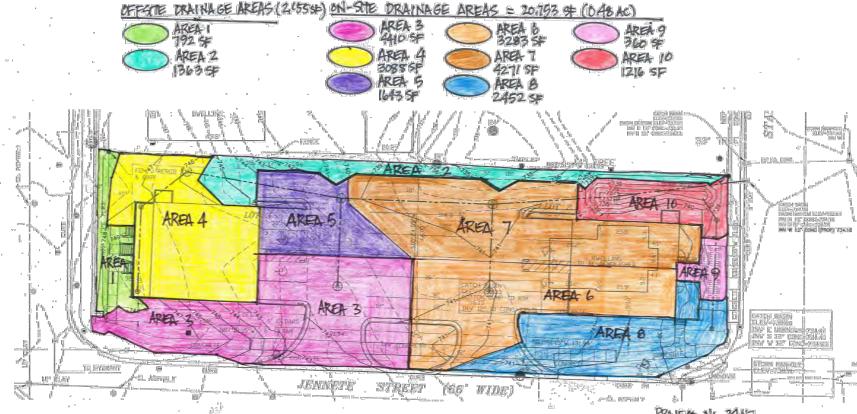
a Q1a 0.045 cfs
b Q1b 0.049 cfs

Q1 _{allow} = 0.045 cfs Q_{allowable} for Area 1

Existing Area 2 of Discharge (M-52 R.O.W.)
a Q2a 0.026 cfs
b Q2b 0.028 cfs

Q2 _{allow} = 0.026 cfs Q_{allowable} for Area 2

ALLOWABLE DISCHARGE FOR PROJECT SITE


EXISTING AND POST-DEVELOPMENT C-VALUE CALCULATIONS Existing Site C Value Calculation of Site Area

AREA	UNITS	PAVEMENT	GRAVEL	ROOF	OFFSITE	LANDSCAPE	TOTAL AREA	CUMULATIVE AREA	WEIGHTED C
		0.90	0.50	0.95	0.50	0.60	AREA	AKEA	C
Ex. Area 1	sf	270		2,345		12,190	14,805		0.661
LX. Alea 1	acres	0.01		0.05		0.28	0.34	0.00	0.001
Ex. Area 2	sf	1,631	405	507		5,738	8,281		0.676
LX. Alea 2	acres	0.04	0.01	0.01		0.13	0.19	0.00	0.070
SITE TOTAL	sf	1,901	405	2,852	0	17,928	23,086	0	0.666
SITE TOTAL	acres	0.04	0.01	0.07	0.00	0.41	0.53	0.00	0.000

WEIGHTED SITE C VALUE = 0.666

Site C Value Calculation of New Developed Area

1									
	AREA	UNITS	PAVEMENT	GRAVEL	ROOF	LANDSCAPE	TOTAL	CUMULATIVE	WEIGHTED
	7.11(=2.1		0.90	0.50	0.95	0.60	AREA	AREA	С
Discharge to	Area 1 (Offsite)	sf	217			575	792	792	0.682
West	Alea I (Olisite)	acres	0.005			0.013	0.018	0.018	0.002
Discharge to	Area 2 (Offsite)	sf				1,363	1,363	1,363	0.600
North	Area 2 (Olisite)	acres				0.031	0.03	0.031	0.000
Discharge to	Area 10 (South CB in Jennett)	sf	22	42		1,152	1,216	1,216	0.602
M-52	Area to (Godin GB in Gennett)	acres	0.001	0.001		0.026	0.03	0.028	0.002
	Area 3	sf	2,780			1,630	4,410	4,410	0.789
	Alea 3	acres	0.064			0.037	0.10	0.101	0.769
	Area 4	sf		369	1,867	852	3,088	7,498	0.800
Discharge to	Alea 4	acres		0.008	0.043	0.020	0.07	0.172	0.800
M-52	Area 5	sf	1,643				1,643	9,141	0.900
R.O.W.	Alea 3	acres	0.038				0.04	0.210	0.900
14.0.	Area 6	sf	2,116		936	231	3,283	12,424	0.893
	Alea 0	acres	0.049		0.021	0.005	0.08	0.285	0.055
	Area 7	sf	3,340		931		4,271	16,695	0.911
	Alea /	acres	0.077		0.021		0.10	0.383	0.511
	Area 8	sf	910			1,542	2,452	19,147	0.711
	Alea 0	acres	0.021			0.035	0.06	0.440	0.711
	Area 9	sf	24			336	360	19,507	0.620
	71100 0	acres	0.001			0.008	0.01	0.448	0.020
	Areas 3 thru 7	sf	9,879	369	3,734	2,713	16,695	16,695	0.854
	Alcus o ullu i	acres	0.227	0.008	0.086	0.062	0.383	0.383	0.004

: POST-DEVELOPMENT DRAINAGE AREAS PROJECT No. 24117 STARMWATER DRAINAGE AREAS POST-DEVELOPMENT T.Z. FOSTER 09.11.24

REQUIRED DETENTION CALCULATION SUMMARY

SHIAWASSEE COUNTY DETENTION POND DESIGN CALCULATION SPREAD

		Rengi Owos		-]			erviousness:	83%
Project	Location:	Ada & M-5	2, Owosso	, MI				f "C" Value:	0.831
					Ma	ximum Allo	wable Outf	low (CFS):	0.026
Cont. Drai	inage Area	(Acres):	0.448	(L)		Storm Rec	currence Int	erval (Yrs):	100
A	В	С	D	Е	F	G	Н	I	J
		100-Year	100-Year	Proposed	Proposed	Maximum	Required	Required	Total
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Total	Rainfall	Runoff	Runoff	Allowable	Detention	Forebay	Required
Duration	Duration	Rainfall	Intensity	Flowrate	Volume	Outflow	Storage	Storage	Storage
Minutes)	(Hours)	(Inches)	(Inch/Hr)	(CFS)	(CFT)	(CFS)	(CFT)	(CFT)	(CFT)
5	0.08	0.62	7.44	2.77	831	0.03	827	813.12	1,640
10	0.17	1.09	6.54	2.43	1,461	0.03	1,453	813.12	2,266
15	0.25	1.40	5.60	2.08	1,876	0.03	1,865	813.12	2,678
20	0.33	1.63	4.89	1.82	2,185	0.03	2,169	813.12	2,982
30	0.50	1.92	3.84	1.43	2,573	0.03	2,550	813.12	3,363
40	0.67	2.19	3.29	1.22	2,935	0.03	2,904	813.12	3,717
50	0.83	2.37	2.84	1.06	3,176	0.03	3,137	813.12	3,950
60	1.00	2.44	2.44	0.91	3,270	0.03	3,223	813.12	4,036
90	1.50	2.84	1.89	0.70	3,806	0.03	3,736	813.12	4,549
120	2.00	3.02	1.51	0.56	4,048	0.03	3,954	813.12	4,767
180	3.00	3.33	1.11	0.41	4,463	0.03	4,323	813.12	5,136
360	6.00	3.90	0.65	0.24	5,227	0.03	4,946	813.12	5,759
720	12.00	4.52	0.38	0.14	6,058	0.03	5,496	813.12	6,309
1080	18.00	4.89	0.27	0.10	6,554	0.03	5,711	813.12	6,524
1440	24.00	5.20	0.22	0.08	6,969	0.03	5,846	813.12	6,659

Total Storage Detention and Retention Required Storage (CFT): 6,659

A) Duration of the storm event in minutes.

B) Duration of the storm event in hours.

C) Total amount of rainfall during a 100-year recurrence storm event for the given duration in Column A & B (ref.: midwestern climatological center rainfall Atlas-Bulletin 71).

D) Average rainfall intensity during the 100-year recurrence storm event. Calculated by dividing Column C by Column B.

E) The unrestricted 100-year recurrence discharge flowrate from the proposed site under fully developed conditions. Calculated by multiplying Intensity (D) and Drainage Area (L).

F) The unrestricted storm event for the given duration in Column A and B. Calculated by multiplying the Proposed Runoff Flowrate (E) by the Storm Duration (A) and by 60 seconds/minute.

G) The maximum allowable discharge from the site is determined by multiplying the drainage area by 0.20 cfs per acre or if the proposed outlet is restrictive by determining the sites share of the existing outlets capacity on a contributing area basis.

H) The required detention storage is determined by multiplying the differention flowrate (Inflow (E) - Outflow (G), by the corresponding duration (A) and by 60 seconds/minute. The calculated maximum release rate only occurs when the pond is full.

As the pond dewaters the actual release rate from the pond will decrease from the maximum allowed release rate to 0.

Therefore, an average release rate equal to 50% of the maximum rate is used in calculating the required storage volume.

The amount of storage required for various storm durations will vary based on rainfall intensity,

the size of the drainage area, and the allowable discharge. The maximum volume of storage for the various storm durations will be the required detention storage volume. This volume of storage will be determined above the required retention volume calculated in Column I.

I) The required retention storage is determined by multiplying the drainage area (L) by O.5 inches of rain.

J) Total required storage is the sum of Column H and I.

K) Proposed percent imperviousness. This assumption will be used to determine the proposed runoff coefficient. Impervious surface will be assumed to have a value of 0.9 and pervious a value of 0.2.

L) Contributing Drainage to the proposed detention or retention system.

Calculation By: Tammy Z. Foster, P.E.

Date: 9/12/2024

REALIZED (ACTUAL) SITE DISCHARGE CALCULATION SUMMARY

SHIAWASSEE COUNTY DISCHARGE CALCULATION SPREADSHEET

Project Name: Rengi Owosso Site Development
Project Location: Ada & M-52, Owosso, MI

Restrictors are required to regulate the discharge of storm water to the allowable discharge rate established for the site. Restrictors are typically in the form of an orifice. The outlet pipe however should be checked as

ORIFICE

The circular in-line restrictor is sized based on the orifice formula.

a metering line to verify that its capacity is not restricting the discharge.

FORMULA

 $a = Qo/[0.62 (64.4(h))\frac{1}{2}]$ a = area of orifice (sq. ft.)

 $\mathbf{Qo} = \mathbf{Maximum Allowable Outflow (cfs)}$

h = head differential from center of orifice to hydraulic grade line of detention facility at maximum capacity (ft).

CALCULATION ACTUAL DISCHARGE CALCULATION FOR PLATE ORIFICE 0.026 cfs Orifce Qact = $C*A*(2*g*h)^1/2$ C = 0.62Sharp Crested Weir 2.78 ft. 0.02092 g = 32.2h = 2.780.0031 sq. ft. head (ft) Oifice Elevation = 734.35 Orifice Dia. = 0.063 ft. **Orifice Dia.** = 0.75804 in. 100-year Storage Elev = 739.10 Actual Orifice Dia. 0.68 Use **Dia.** = 0.75 in. Actual Orifice Dia. 0.057 Area of Orficie 0.00252

METERING LINE

The metering line calculation is based on the manning's equation.

FORMULA

Qm = a(1.49/N) R^{2/3} S^{1/2}
a = area of pipe (sq. ft)
N = Manning's roughness coefficient
R = hydraulic radius = area/wetted perimeter

CALCULATION

S = hydraulic grade line slope (ft/ft)

 Pipe Dia. =
 12
 in.

 Pipe Dia. =
 1
 ft.

 a =
 0.79
 sq. ft.

 N =
 0.013

 R =
 0.25

 S =
 0.500
 ft/ft.

 Om =
 25.261
 cfs

If Qm is less than Qo discharge is limited by outlet pipe and should be re-evaluated

If Qo is less than Qm discharge is limited by orifice

9/19/2024

Calculation By: Tammy Z. Foster, P.E.

MDOT 2484 (11/2022)

DRAINAGE DESIGN CHECKLIST FOR ACCESSING STATE TRUNKLINE DRAINAGE SYSTEMS

Page 2 of 2

ALL FIELDS SHALL BE COMPLETED BY THE APPLICANT

Data Summary Existing 0.19 acres (area to on Sheet C10X) .383 acres (Areas 3 thru 7 on Sheet C10X REVIEW DRAWING

REVIEW DRAWING

CONSTRUCTION

CONSTRUCTION MDOT ROW With required detention* Frequency Storage 0.031 IN/A 1096 10-year Storn Event 0.044 3827 N/A N/A N/A 50-year Storm N/A 0.025 2123 0.061 5260 0.026 0.069 5954 1.6X10-6 6659

* Not required if proposed discharge is less than or equal to the existing discharge without detention.

** Not applicable (N/A) if "sheet flow" into MDOT ROW or detention is proposed.

* * Difference in volume between the proposed and existing conditions, N/A if proposed volume is less than or equal to existing volume.

*** Harmful Interference Evaluation.

Certification

Tammy Z. Foster , P.E., have prepared the attached plans and specifications for the (Print your name)

proposed drainage system. The proposed flow from this drainage system is discharged at a flow rate equal to or less than the existing flow rate conditions into the MDOT stormwater conveyance system; the velocity discharged is properly dissipated; there is storage on the permit applicant's property for the range of flows above so that no harmful interference to MDOT ROW or adjacent properties will be caused. This discharge to MDOT's stormwater system will not cause a violation of MDOT's NPDES stormwater discharge permit and the site is designed to include best management practices (BMPs) to treat the first inch of runoff to achieve 80% total suspended sediment removal. A maintenance plan is developed to ensure the long-term operation of the BMPs.

Signature OWWW 5000 P.E.

Michigan Professional Engineer Deense Number 6201049309

This document shall be sealed in the space to the left and submitted with the

dig.

ZIEMNICK FOSTER
ENGINEERING, LLC

426 S. Clinton Street

Grand Ledge, MI 48837

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Project Manager: TZF
Reviewed By: JWF
Engineer: TZF
Drafter: TZF
Drawing Scale: AS NOTED

Issued for

Issued for Regulatory Review

Project Name

Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI

Jennett Buildings Site Development

Drawing Title
STORMWATER
CALCS

Drawing Number

C103

OUTLET CONTROL STRU	CTURE DESIGN C	:ALCULATION	<u>NS</u>				
Control Outlet Str	ucture Design	Rengi O	wosso Apts.	9/19/2024			
Sizing for First Flus	sh Flood						
First Flood dischage	should be relea	sed withir	n a period of		24	hours	
Q_{ff} =	0.007	cfs	V _{ff} /(24*3600)				
h _{avg} =	0.464	ft	2/3*(Zff-Zout)	trapezoidal ba	sin		
A=	0.00203	ft	Q _{avq} /(C x ((2	*g*h _{avg})^0.5)	C=	0.62	Sharp
Hole Dia.	0.60	in	avg (((uvg, ,		32.2	Crested
		ft ²			9-	52.2	
A _{actual} =	0.001963	11					Weir
Hole Qty:	1.036043138						
Use	1	holes	@elevation	734.52	(Z_{ff})		
Q _{act ff} =	0.006655723	cfs	C x A _{actual} x ((2*g*h)^0.5)			
Actual T _{ff} =	24.87	hours	V _{ff} /(Q _{act ff} *360	00)			
Time _(actual) is within	-3.60%	of 24 hou		ОК			
(actual) 13 Within	-3.00 /0	01 24 1100	13	OK			
Sizing for Bank Ful	l Flood						
Bank full discharge s		ed within	time period of		24	hours	
Q _{bf} =	0.0324		V _{bf} /(24*3600)		W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
h _{avg} =	1.336			trapezoidal ba	sin		
-			,			0.60	Chaus
A=	0.005635508		$Q_{avg}/(C \times ((2)))$	g H _{avg}) 0.5)		0.62	Sharp
Hole Dia.	0.5	_			g=	32.2	Crested
A _{actual} =	0.001363538						Weir
Check discharge throug		rifices to se	ee if additional h	noles are necess	ary for bank	fullI dis	charge
Hole Qty:							
Use	4	holes	@elevation	736.524	(Z_{bf})		
Q _{bf actual} =	0.031366441	cfs	C x A _{actual} x ((2*g*h)^0.5)			
Actual Time=	24.80	hours	V _{bf} /(Q _{actual} *3	600)			
Time _(actual) is within	-3.33%	of 24 hou	rs	ОК			
Sizing for 100-year	Storm using o	rifices in	outlet struct	<u>ure</u>			
Q _{allow} =	0.026	cfs					
h _{total} =	2.98	ft	(2/3)*Z ₁₀₀ - Z	out			
h _{total, bf} =	2.882513333	ft	(2/3)*Z ₁₀₀ - Z	ff			
A ₁₀₀ =	0.0044	eft					Sharp
			Q ₁₀₀ / C X ((2	(a*h +atal))^0.5)	C=	0.62	
Hole Diameter	0.75		Q ₁₀₀ / C x ((2	2g*h _{total}))^0.5)		0.62	
_	0.75	in	Q ₁₀₀ / C x ((2	2g*h _{total}))^0.5)		0.62 32.2	Crested
A _{100 actual} =	0.003067962	in	Q ₁₀₀ / C x ((2	2g*h _{total}))′0.5)			
-	0.003067962 1.442926333	in ft ²	Q ₁₀₀ / C x ((2	(g*h _{total}))′0.5)			Crested
A _{100 actual} = Hole Qty: Use	0.003067962 1.442926333 1	in ft ² holes					Crested
A _{100 actual} = Hole Qty:	0.003067962 1.442926333	in ft ² holes	C x A _{actual} x (Crested
A _{100 actual} = Hole Qty: Use	0.003067962 1.442926333 1	in ft ² holes					Crested
A _{100 actual} = Hole Qty: Use Q _{actual, 100} =	0.003067962 1.442926333 1	in ft ² holes					Crested
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F	0.003067962 1.442926333 1 0.0264	in ft ² holes cfs	C x A _{actual} x (g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06	in ft ² holes cfs	C x A _{actual} x ((2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete	in ft² holes cfs	C x A _{actual} x ((2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material Pipe Size =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete	in ft² holes cfs cfs	C x A _{actual} x ((2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material Pipe Size = Area of pipe =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete 12 0.785398163	in ft² holes cfs cfs	C x A _{actual} x ((2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material Pipe Size = Area of pipe = n =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete 12 0.785398163 0.013	in ft² holes cfs cfs in ft²	C x A _{actual} x (Q _a when disc	(2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material Pipe Size = Area of pipe = n = R =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete 12 0.785398163 0.013 0.25	in ft² holes cfs cfs in ft²	C x A _{actual} x ((2*g*h)^0.5)	g=	32.2	Crested Weir
A _{100 actual} = Hole Qty: Use Q _{actual, 100} = Outlet F Qpeak = Pipe Material Pipe Size = Area of pipe = n = R = Pipe Slope =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete 12 0.785398163 0.013 0.25 0.5	in ft² holes cfs cfs in ft² ft %	C x A _{actual} x (Q _a when disc	(2*g*h)^0.5) charging to a ro	g=	32.2	Crested Weir
Use Q _{actual, 100} =	0.003067962 1.442926333 1 0.0264 Pipe Design 3.00926E-06 Concrete 12 0.785398163 0.013 0.25	in ft² holes cfs cfs in ft² ft % cfs	C x A _{actual} x (Q _a when disc	(2*g*h)^0.5) charging to a ro	g=	32.2	Crested Weir

Qallow =	0.026	cfs		
V _{ff} =	596	ft ³	0.5" over contributing area	
V _{bf} =	2,800	ft ³	2 yr/24-hour storm I = 2.35 inches	
$Z_{\rm ff}$ =	735.22		Interporlated (see ADS Cumulatirve Storage V	olume Spreadsh
$Z_{bf} =$	736.52		Interporlated (see ADS Cumulatirve Storage V	olume Spreadshe
Z ₁₀₀ =	739.54		Interporlated (see ADS Cumulatirve Storage V	olume Spreadshe
Z _{emergency} =	740.54		Top of Weir Wall in Outlet Structure	
Z ₀ =	734.52		Bottom of Stone in Underground Storage	
$Z_{out} =$	735.07		Outlet Pipe Invert	

Project:	OWOSSO Rengi Ap	partment	-	//ADS
Chamber Mo	odel -	MC-3500	Ī	
Units -		Imperial		StormTech (M)
Number of C	chambers -	34		Otolillioon, iii
Number of E	nd Caps -	12		
Voids in the	stone (porosity) -	40	%	
Base of Sto	ne Elevation -	734.52	ft	
Amount of S	tone Above Chambers -	12	lin	

Area of system -

Amount of Stone Below Chambers -

2147 sf Min. Area - 1880 sf min. area

Chamber Single End Cap Chambers End Cap Cabb Feor) Cabb Fe	StormT	ach MC-3500	Cumulativ	yo Storago	Volumes				
Chamber Single Find Cap Chambers Find Cap Stone Found Stone System Find Cap Chambers Chamb	Height of					Incremental	Incremental Ch	Cumulative	
0.00 0.00 0.00 0.00 1.57 1.57 1.57 702.601 74.002 0.00 0.00 0.00 0.00 0.00 1.57 1.57 701.57 702.44 739.94 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6845.81 739.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6859.81 739.87 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6845.81 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6787.74 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6787.74 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6787.74 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.50 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.35 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.45 739.84 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 6644.81 739.80 0.00 0.00 0.00 0.00 0.00 71.57 71.57 1.57 6644.81 739.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	System								Elevation
0.00 0.00 0.00 0.00 0.00 71.57 71.57 7002.44 739.94 97.00 0.00 0.00 0.00 0.00 71.57 71.57 70.57 739.89 97.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6939.87 739.59 97.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6939.87 739.76 739.69 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 671.57 671.57 739.60 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 671.57 671.57 739.60 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 671.57	(inches)	(cubic feet)	(cubic feet)	(feet)					
0.00 0.00 0.00 0.00 71.57 71.57 6930.87 738.85 8	66								
0.00 0.00 0.00 0.00 71.57 71.57 6859.31 739.76 0.00 0.00 0.00 0.00 71.57 71.57 6859.31 739.76 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6716.77 739.60 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6716.77 739.60 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6716.73 434.6 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6753.04 739.44 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6853.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.10 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.86 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.86 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6885.04 739.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	65								
0.00 0.00 0.00 0.00 71.57 71.57 6787.74 739.69 REQUIRED CO. 0.00 0.00 0.00 0.00 71.57 71.57 6787.74 739.69 REQUIRED CO. 0.00 0.00 0.00 0.00 71.57 71.57 6787.04 739.52 CO. 0.00 0.00 0.00 0.00 71.57 71.57 693.04 739.52 CO. 0.00 0.00 0.00 0.00 71.57 71.57 693.04 739.52 CO. 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6930.14 739.59 REQUIRED CO. 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6930.14 739.59 REQUIRED CO. 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6938.34 739.19 REQUIRED CO. 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6938.34 739.19 REQUIRED CO. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	64								
0.00 0.00 0.00 0.00 7157 7157 671617 73960 6800 6800 0.00 0.00 0.00 7157 7157 671617 73960 6860 6850 67157 3094 6850 67147 7393 6850 6850 67157 7157 6873.04 739.44 6850 67157 7157 6873.04 739.44 6850 67157 7157 6850 739.74 739.75 6850 739.75 7157 6850 739.75 739.10 739.75 7157 6850 739.75 739.10 739.75 7157 6850 739.75 739.10 739.75 7157 6850 739.75 739.10 739.75 7157 6850 739.75 739.10 739.75 7157 6850 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.10 739.75 739.75 739.10 739.75 7	63								
0.00 0.00 0.00 0.00 71.57 71.57 6644.61 739.52 (6.599 CF) 0.00 0.00 0.00 0.00 71.57 71.57 6673.04 739.52 (6.599 CF) 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6691.47 739.35 71.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6691.47 739.35 71.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 629.91 739.15 71.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 629.67 739.19 71.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 629.67 739.19 71.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57 629.67 739.19 71.50 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 629.67 739.19 72.50 629.77 739.19 72.50 629.70 739.19 72.50 629.77 739.19 72.50 629.70 738.69 72.50 62.50 738.69 72.50 62.50 738.69 72.50 62.50 738.69 72.50 62.50 738.69 72.50 62.50 738.69 72.50 62.50 738.69 72.50 738.60 72.50 738.69 72.50 738.60 72.50 738.60 72.50 738.60 72.50 738.	62								
0.00 0.00 0.00 0.00 0.00 71.57 71.57 657.54 739.55 650.147 739.55 60.00 0.00 0.00 0.00 0.00 71.57 71.57 650.147 739.55 60.00 0.00 0.00 0.00 0.00 71.57 71.57 642.991 739.27 92.00 0.00 0.00 0.00 0.00 71.57 71.57 642.991 739.27 92.00 0.00 0.00 0.00 0.00 71.57 71.57 642.991 739.19 92.00 0.00 0.00 0.00 0.00 71.57 71.57 642.991 739.19 92.00 0.00 0.00 0.00 71.57 71.57 642.991 739.19 92.00 0.00 0.00 0.00 70.78 72.75 6215.21 739.00 92.00	61 60								
0.00 0.00 0.00 0.00 0.00 71.57 71.57 6501.47 739.35 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6501.47 739.35 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.02 0.00 0.00 0.00 0.00 0.00 71.57 71.57 74.57 625.21 739.02 0.00 0.00 0.00 0.00 0.00 71.57 71.57 74.57 625.27 734.47 789.94 0.00 0.00 0.00 0.00 0.00 71.57 71.57 74.57 74.57 73.86 0.00 0.00 0.00 0.00 0.00 71.57 71.57 74.57 74.57 73.60 0.00 0.00 0.00 0.00 0.00 71.57 71.57 74.57 74.57 73.50 7	59								
0.00 0.00 0.00 0.00 0.00 71.57 71.57 642.91 739.27 0.00 0.00 0.00 0.00 0.00 71.57 71.57 642.91 739.19 0.00 0.00 0.00 0.00 0.00 71.57 71.57 628.677 739.10 0.00 0.00 0.00 1.97 0.00 70.78 72.75 628.677 739.10 0.00 0.00 1.97 0.00 70.78 72.75 628.677 739.10 0.00 0.00 1.97 0.00 70.78 72.75 628.677 739.00 0.00 0.00 1.97 0.00 70.78 72.75 628.677 739.00 0.00 0.00 0.00 1.97 0.00 70.78 72.75 628.677 739.00 0.00 0.00 0.00 1.97 0.00 70.78 72.75 6215.21 739.00 0.00 0.00 0.00 1.97 0.00 70.78 72.75 6215.21 739.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 628.677 738.49 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 738.69 738.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	58								
0.00 0.00 0.00 0.00 0.00 71.57 71.57 73.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 6358.34 739.19 0.00 0.00 0.00 0.00 71.57 71.57 625.21 739.00 0.00 0.00 0.00 1.97 0.00 70.78 72.75 625.21 739.00 0.01 0.09 0.02 6.60 0.29 68.81 75.70 625.21 738.69 0.40 0.05 13.72 0.62 65.83 80.17 598.82 738.67 0.60 0.00 0.00 34.96 1.06 57.6 93.18 80.07 5988.52 738.67 1.03 0.09 34.96 1.06 57.6 93.18 5622.88 737.86 50 1.03 0.09 34.96 1.06 57.6 93.18 5622.88 737.86 50 1.125 0.11 42.49 1.29 54.06 97.83 5729.50 738.62 1.126 0.13 48.36 1.52 51.62 101.49 1553.16 738.44 1.57 0.14 53.49 1.73 49.48 104.70 5530.18 738.27 1.171 0.16 58.04 1.95 47.57 107.57 127.57 2738.19 1.194 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 1.194 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 1.194 0.20 65.88 2.41 44.25 112.54 580.20 738.62 2.13 0.23 72.58 2.82 41.41 116.81 958.43 737.94 2.22 0.25 75.62 3.01 40.11 118.74 498.04 737.79 2.23 0.25 77.84 3 319 38.09 120.54 474.48 737.79 2.246 0.29 83.61 3.53 36.71 123.85 50.21 1737.60 2.253 0.31 85.98 3.88 19 3.85 34.75 126.39 399.95 737.62 2.260 0.33 89.31 4.01 33.84 128.16 442.61 737.60 2.269 0.32 88.19 3.85 34.75 126.79 399.99 573.67 2.270 0.36 92.31 4.16 32.99 136.05 1373.81 737.69 2.290 0.40 99.42 4.75 2.99 134.07 123.85 50.07 737.36 4 2.291 0.41 100.98 4.88 2.92 135.09 338.87 736.67 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 134.07 137.87 137.86 50.373.81 2.292 0.40 99.42 4.75 2.99 136.04 142.20 194.97 73.62 2.292 0.40 99.42 4.75 2.99 136.04 142.20 194.97 73.62 2.292 0.40 99.42 4.75 2.99 136.04 142.20 194.97 73.64 2.292 0.40 99.42 4.75 2.99 136.04 142.20 194.97 73.64 2.292 0.40 99.42 4.75 2.99 136.09 134.07 137.73 56.73 3.30 0.48 108.86 57.6 2.52 87 140.94 12.22 574.50 73.64	57								
0.06 0.00 1.97 0.00 70.78 72.75 6215.21 739.02 0.19 0.02 6.60 0.29 68.81 75.70 6142.45 738.94 0.29 0.04 9.99 0.45 67.39 77.83 6066.76 738.54 0.29 0.04 0.05 13.72 0.62 65.83 80.17 598.89 2738.75 0.69 0.07 23.36 0.81 61.90 86.07 598.89 2738.75 0.69 0.07 23.36 0.81 61.90 86.07 598.89 27 738.69 1.03 0.09 34.66 1.06 57.16 93.18 592.28 18 1.25 0.11 42.48 1.29 54.06 97.83 572.95 0.738.89 1.25 0.11 42.48 1.29 54.06 97.83 572.95 0.738.89 1.57 0.14 53.49 1.73 49.48 104.70 5590.18 738.35 1.57 1.71 0.16 58.04 1.95 47.67 107.57 540.54 87.78 47.81 1.83 0.18 62.17 2.18 45.83 110.18 5317.52 738.19 1.94 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 2.04 0.22 60.39 2.62 42.76 114.77 5065.20 7378.62 2.13 0.23 72.58 2.30 1 40.11 118.77 5065.20 7378.62 2.21 0.23 72.58 81.08 3.36 37.79 122.23 4624.47 737.69 2.23 0.28 81.08 3.36 37.79 122.23 4624.47 737.69 2.246 0.29 83.61 3.53 36.71 125.36 4378.26 737.52 2.36 0.28 81.08 3.36 37.79 122.25 4624.47 737.69 2.25 0.31 85.96 3.69 35.71 125.36 4378.26 737.52 2.26 0.33 90.31 4.01 33.44 128.16 4126.11 737.30 2.26 0.33 90.31 4.01 33.44 128.16 4126.11 737.30 2.26 0.33 90.31 4.16 32.99 134.07 3472.94 736.69 2.27 0.35 92.31 4.16 32.99 136.99 3067.75 736.69 2.29 0.40 99.42 4.75 29.90 136.99 3067.75 736.69 2.29 0.40 10.99 42 4.75 29.90 136.99 3067.75 736.69 2.29 0.40 10.99 42 4.75 29.90 134.07 3472.94 736.84 2.29 0.40 10.98 5.77 4.61 30.62 132.99 300.736.00 2.29 0.40 10.88 5.76 2.88 13.86 279.24 736.84 2.29 0.40 10.88 5.76 2.28 8 14.49 12.27 200.20 736.10 2.29 0.40 10.88 5.76 2.28 8 14.49 12.27 200.20 736.10 2.30 0.44 10.08 5.76 2.28 8 14.49 13.86 279.24 736.84 3.30 0.44 10.89 5.76 2.28 8 14.49 13.86 279.24 736.84 3.31 0.45 106.44 5.41 2.68 8 138.68 279.24 736.84 3.32 0.51 112.81 6.08 24.43 13.89 1518.31 735.70 3.33 0.50 0.33 113.70 6.67 13.85 6.66 21.80 140.44 73.55 736.04 3.34 0.54 116.88 6.62 2.22 2.2 145.59 30.30 379 736.70 3.34 0.54 116.88 6.62 2.22 2.2 145.99 300.736.00 3.34 0.55 1112.81 6.08 6.09 2.40 14.47 95 736.00	56								739.19
0.19 0.02 6.60 0.29 6.88 1 75.70 6614.25 738.84 0.29 0.04 9.99 0.45 67.39 77.83 6066.67 738.85 0.40 0.05 13.72 0.62 65.83 80.17 5988.92 738.77 0.689 0.07 23.36 0.81 61.90 86.07 5988.92 738.77 0.69 0.07 23.36 0.81 61.90 86.07 5988.92 738.77 0.69 0.07 23.36 0.81 61.90 86.07 5988.92 738.77 0.69 0.07 23.36 0.81 61.90 86.07 5988.92 738.77 0.69 0.07 23.36 0.81 61.90 86.07 5988.92 738.77 0.69 0.07 23.36 0.81 61.90 86.07 5988.92 738.60 0.00 0.00 0.00 0.00 0.00 71.57 71.57 24524.84 738.60 0.40 0.05 13.72 0.62 13.02 14.42 0.13 48.86 1.52 51.62 101.49 5631.67 738.44 0.40 1.25 0.11 42.48 1.29 54.08 97.83 5729.92 0.738.62 0.40 0.20 65.88 0.41 1.73 49.48 104.70 5530.18 738.35 0.171 0.16 58.04 1.95 47.57 107.57 54254.87 738.77 0.184 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 0.20 40 0.22 69.99 2.62 42.76 114.77 5995.20 738.02 0.213 0.23 72.88 2.82 41.41 116.81 4896.03 737.94 0.22 0.25 75.62 3.01 40.11 118.74 4863.62 737.85 0.231 0.27 78.43 3.19 38.92 120.54 4744.88 737.77 0.246 0.29 83.61 3.53 36.71 123.86 4502.11 737.60 0.25 33 0.31 85.96 3.69 3.69 3.571 122.39 4624.34 737.60 0.25 33 0.31 85.96 3.69 3.69 3.571 122.39 4624.34 737.60 0.25 90.32 88.19 3.85 34.75 126.79 4252.90 737.42 0.26 0.33 90.31 4.01 33.84 128.16 4126.11 737.55 0.277 0.36 94.22 4.32 3.15 13.86 399.98 50.737.49 0.26 0.33 90.31 4.01 33.84 128.16 4126.11 737.50 0.279 0.41 100.98 4.89 23.22 135.09 3868.90 737.40 0.290 0.44 100.98 4.89 23.22 135.09 3868.90 737.44 0.290 0.40 99.42 4.75 29.90 134.07 3472.94 736.92 0.291 0.40 99.42 4.75 29.90 134.07 3472.94 736.92 0.292 0.40 99.42 4.75 29.90 134.07 3472.94 736.92 0.292 0.40 99.84 19.86 5.76 2.58 13.86 2.73 73.86 0.303 0.44 100.89 5.87 24.88 13.86 33.86 73.73 2.77 3.86 0.303 0.44 100.89 5.87 24.88 13.86 6.35 2.79 9.94 736.02 0.304 0.49 110.89 5.87 24.88 13.86 6.35 2.79 9.94 735.52 0.305 0.49 110.89 5.87 24.88 13.89 6.30 13.94 8 2.20 2.79 8.10 0.300 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 36.92 0 735.50 0.00 0.00 0.00 0.00 0.00 71.57 71.57	55	0.00	0.00	0.00	0.00	71.57	71.57	6286.77	739.10
0.29 0.04 9.99 0.45 67.39 77.83 6066.66 73.85 8 8 0.17 5968.92 738.77 6 0.69 0.07 23.36 0.81 61.90 86.07 5908.75 738.69 1.03 0.09 34.96 1.06 57.16 93.18 5822.87 738.60 1.03 0.09 34.96 1.06 57.16 93.18 5822.87 738.60 1.25 0.11 42.48 1.29 54.06 97.83 5729.50 738.52 1.42 0.13 48.36 1.52 51.62 101.49 5631.87 738.44 1.57 0.14 53.49 1.73 49.48 104.70 5530.18 738.53 1.71 0.14 53.49 1.75 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 738.77 107.57 5425.48 10.18 62.17 2.18 45.83 10.18 5317.92 738.10 10.18 5317.92 738.10 10.18 5317.92 738.10 10.18	54								
0.40 0.05 13.72 0.62 65.83 80.17 5988.92 738.77 0.66 0.07 508.17 598.89.2 738.60 1.03 0.09 34.96 1.06 67.16 93.18 5822.68 738.60 1.25 0.11 42.48 1.29 54.06 97.83 5725.50 738.60 1.25 0.11 42.48 1.29 54.06 97.83 5725.50 738.50 1.25 1.25 0.11 42.48 1.29 54.06 97.83 5725.50 738.50 1.25 1.25 0.11 42.48 1.29 54.06 97.83 5725.50 738.50 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	53								
0.69 0.07 23.36 0.81 61.90 88.07 5908.75 738.69 1.03 0.09 34.96 1.06 57.16 93.18 892.26 87.78 6.99 1.25 0.11 42.48 1.29 54.06 07.83 5729.50 738.52 1.42 0.13 48.36 1.52 5162 101.49 593.67 738.44 1.57 0.14 53.49 1.72 49.48 104.70 5530.18 738.35 1.71 0.16 58.04 1.95 47.57 107.57 5425.48 738.27 1.83 0.18 62.17 2.18 45.83 110.18 5317.92 738.10 1.94 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1	52								
1 03 0 09 34.96 1.06 57.16 93.18 5822.86 738.60 125 0111 42.48 1.29 54.06 97.83 5725.50 738.50 14.14 14.2	51								
1 125	50 40								
1.42 0.13 48.36 1.52 51.62 101.49 5631.67 788.44 1.157 0.14 53.49 1.73 49.48 104.70 530.18 738.35 1.71 0.16 58.04 1.95 47.57 107.67 5425.48 738.27 1.83 0.18 62.17 2.18 45.83 110.18 5317.92 738.19 1.94 0.20 65.88 2.41 44.25 112.54 5207.74 738.19 1.94 0.22 69.39 2.62 42.76 114.77 5995.20 738.02 1.213 0.23 72.59 2.62 41.41 116.81 4980.43 737.94 1.22 1.33 0.23 72.59 2.62 41.41 116.81 4980.43 737.94 1.22 1.34 0.27 78.43 3.19 38.92 1.20 4.44 483.60 737.86 1.22 1.34 0.27 78.43 3.19 38.92 1.20 4.44 4883.60 737.86 1.22 1.34 0.27 78.43 3.19 38.92 1.20 54 474.48 737.77 1.37 60 1.23 1.23 1.23 1.22 1.23 4624.34 737.69 1.22 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.69 1.22 1.23 4624.34 737.59 1.22 1.23 4624.34 737.59 1.22 1.23 4624.34 737.59 1.22 1.23 4624.34 737.59 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23	49 48								
1.57	46 47								
171 0.16 88.04 1.95 47.57 107.57 5425.48 738.27 183 0.18 62.17 2.18 45.83 110.18 521.72 738.19 1.94 0.20 65.88 2.41 44.25 112.54 5207.74 738.10 1.94 0.22 69.39 2.62 42.76 114.77 5095.20 738.02 2.13 0.23 72.58 2.82 41.41 116.81 4803.62 737.86 2.22 0.25 75.62 3.01 40.11 118.74 4863.62 737.86 2.23 10.27 78.43 3.19 38.92 120.54 4744.88 737.77 18 2.38 0.28 81.08 3.36 37.79 122.23 4624.34 737.69 2.46 0.29 83.61 3.53 36.71 125.36 4378.62 17.37.60 2.53 0.31 85.96 3.89 35.71 125.36 4378.62 17.37.60 2.25 0.32 88.19 3.85 36.71 125.36 4378.62 737.52 2.26 0.33 0.31 85.96 3.89 35.71 125.36 4378.62 737.52 2.26 0.33 90.31 4.01 33.84 128.16 422.20 737.44 2.26 0.33 90.31 4.01 33.84 128.16 422.20 737.37 2.7 2.77 0.36 94.22 4.32 32.15 130.99 386.50 737.19 2.82 0.37 96.04 4.47 31.36 131.87 373.78 137.10 2.28 0.37 96.04 4.47 31.36 131.87 373.78 137.10 2.28 0.37 96.04 4.47 31.36 131.87 373.78 173.69 4.29 0.40 99.42 4.75 2.99 0.134.07 3472.94 736.94 2.99 0.41 100.98 4.89 2.92 135.09 338.87 736.85 3.00 0.42 102.42 5.02 2.85 9.136.04 3203.79 736.77 736.78 13.30 0.45 106.44 5.41 2.88 13.88 2792.94 736.84 3.30 0.44 105.21 5.28 2.27 79 0.41 100.98 4.89 2.92 2.136.09 338.87 736.85 3.30 0.44 105.21 5.28 2.27 37 137.68 2.29 0.40 99.42 4.75 2.99 0.134.07 3472.94 736.94 3.30 0.45 106.44 5.41 2.88 3.18 8.8 2792.94 736.62 3.30 0.47 108.78 5.55 2.50 140.22 2514.80 736.85 3.30 0.45 106.44 5.41 2.88 3.18 8.8 2792.94 736.62 3.30 0.47 108.78 5.55 2.50 140.22 2514.80 736.85 3.30 0.45 106.44 5.41 2.88 3.38 6.65 112.81 6.08 2.41 14.20 199.97 75 736.02 3.34 0.51 113.70 6.17 13.70 6.09 6.44 2.25 5.14 5.09 13.86 2.79 2.79 2.75 5.00 2.77 5.36 6.9 3.30 0.47 108.78 5.55 2.20 2.22 144.59 159.31 735.87 735.94 3.30 0.50 0.43 103.81 5.16 27.98 136.64 3.30 1.79 73.75 73.69 3.30 0.48 100.98 5.76 2.52 2.22 144.59 140.94 2.233.64 736.92 736.77 736.02 3.34 0.51 113.70 6.17 13.70 6.17 13.70 14.17 13.70 6.17 13.70 14.17 13.70 6.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.17 13.70 14.1	46								
1.83	45								
2.04 0.22 69.39 2.62 42.76 114.77 5095.20 738.02 2.13 0.23 72.58 2.82 41.41 116.81 4980.43 737.79 4 2.22 0.25 75.62 3.01 40.11 118.74 4863.62 737.85 2.31 0.27 78.43 3.19 38.92 120.54 4744.88 737.77 2.288 0.28 81.08 3.36 37.79 122.23 4744.88 737.77 2.28 2.38 0.28 81.08 3.36 37.79 122.23 44.44.88 737.77 2.28 2.46 0.29 83.61 3.53 36.71 123.85 4502.11 737.60 2.53 0.31 85.96 3.69 35.71 125.36 4378.26 737.52 2.59 0.32 88.19 3.85 34.75 126.79 452.90 737.44 2.26 0.33 90.31 4.01 33.84 128.16 4126.11 737.35 2.277 0.36 92.31 4.01 33.84 128.16 4126.11 737.35 2.277 0.35 92.31 4.16 32.98 129.45 9397.95 737.27 2.277 0.36 94.22 4.32 32.15 130.69 3868.50 737.19 2.82 0.37 96.04 4.47 31.36 131.87 3737.81 737.10 2.88 0.38 97.77 4.61 30.62 132.99 3605.94 737.02 2.92 0.40 99.42 4.75 29.90 134.07 3472.94 736.94 2.97 0.41 100.99 4.89 2.92 135.09 338.87 736.85 3.01 0.42 102.42 5.02 28.59 136.04 3203.79 736.67 33.05 0.43 103.81 5.16 27.98 136.95 3067.75 736.89 3.09 0.44 105.21 5.28 27.37 137.86 2300.87 736.69 3.09 0.44 105.21 5.28 27.37 137.86 2300.87 736.60 3.30 0.44 105.21 5.28 27.37 137.86 230.80 736.60 3.30 0.49 110.89 5.67 2.86 30 140.22 2514.80 736.35 3.29 0.50 111.87 5.88 24.43 142.27 2092.02 736.10 3.31 0.45 106.44 5.41 26.83 138.68 2792.94 736.52 3.20 0.47 108.78 5.65 25.80 140.22 2514.80 735.85 3.30 0.49 110.89 5.67 24.86 141.62 2233.64 736.19 3.29 0.50 111.87 5.98 24.43 142.27 2092.02 736.10 3.31 0.45 106.44 5.41 26.83 138.68 2792.94 736.52 3.32 0.48 109.86 5.76 2.532 140.94 2374.58 736.02 3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.35 8.33 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.57 3.50 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 571.57 644 0.735.59 10.00 0.00 0.00 0.00 0.00 71.57 71.57 571.57 572.53 735.19 (596.67) 4.60 0.00 0.00 0.00 0.00 0.00 71.57 71.57 572.53 734.75 10.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 571.57 572.53 734.75 10.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 571.57 572.53 734.75 10.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 572.53 734.75 10.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 429.4	44								
2 13	43	1.94	0.20	65.88		44.25	112.54	5207.74	738.10
2 22	42	2.04	0.22	69.39	2.62	42.76	114.77	5095.20	738.02
2.31	41								
2.38	40								
2.46	39								
2.53	38 37								
2.59	36								
2.66	35								
2.72	34								
2.82	33								
2.88	32	2.77	0.36	94.22	4.32	32.15	130.69	3868.50	737.19
2.92	31								737.10
2.97	30								
3.01 0.42 102.42 5.02 28.59 136.04 3203.79 736.77 3.05 0.43 103.81 5.16 27.98 136.95 3067.75 736.69 3.09 0.44 105.21 5.28 27.37 137.86 2930.80 736.60 736.60 3.13 0.45 106.44 5.41 26.83 138.68 2792.94 736.52 3.17 0.46 107.63 5.53 26.30 139.46 2654.27 736.44 3.20 0.47 108.78 5.65 25.80 140.22 2514.80 736.35 3.23 0.48 109.86 5.76 25.32 140.94 2374.58 736.27 3.26 0.49 110.89 5.87 24.86 141.62 2233.64 736.19 3.29 0.50 111.87 5.98 24.43 142.27 2092.02 736.10 3.32 0.51 112.81 6.08 24.01 142.90 1949.75 736.02 3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.37 0.52 114.53 6.27 23.25 144.05 1663.36 735.85 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.77 33.41 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 0.00 71.57 71.57 572.53 735.19 (596 CF) A 0.00 0.00 0.00 0.00 71.57 71.57 572.53 735.19 0.00 0.00 0.00 0.00 71.57 71.57 572.53 735.94 736.94 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.8	29								
3.05	28								
3.09 0.44 105.21 5.28 27.37 137.86 2930.80 736.60 REQUIRED 2 3.13 0.45 106.44 5.41 26.83 138.68 2792.94 736.52 3.17 0.46 107.63 5.53 26.30 139.46 2654.27 736.44 3.20 0.47 108.78 5.65 25.80 140.22 2514.80 736.35 3.23 0.48 109.86 5.76 25.32 140.94 2374.58 736.27 3.26 0.49 110.89 5.87 24.86 141.62 2233.64 736.19 3.29 0.50 111.87 5.98 24.43 142.27 2092.02 736.10 3.32 0.51 112.81 6.08 24.01 142.90 1949.75 736.02 3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.37 0.52 114.53 6.27 23.25 144.05 1663.36 735.85 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.77 33.41 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED 6.59 C.F. A.	27								
3.13	26 25								
3.17	24								
3.20 0.47 108.78 5.65 25.80 140.22 2514.80 736.35 3.23 0.48 109.86 5.76 25.32 140.94 2374.58 736.27 3.26 0.49 110.89 5.87 24.86 141.62 2233.64 736.19 3.29 0.50 111.87 5.98 24.43 142.27 2092.02 736.10 3.32 0.51 112.81 6.08 24.01 142.90 1949.75 736.02 3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.37 0.52 114.53 6.27 23.25 144.05 1663.36 735.85 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.77 3.41 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 129.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED R 0.00 0.00 0.00 0.00 71.57 71.57 572.53 735.19 0.00 0.00 0.00 0.00 71.57 71.57 572.53 735.19 0.00 0.00 0.00 0.00 71.57 71.57 357.83 734.94 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 0.00 71.57 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0.00 71.57 71.57 734.85 0.00 0.00 0.00 0.00 0	23								
3.23	22								
3.29	21								
3.32 0.51 112.81 6.08 24.01 142.90 1949.75 736.02 3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.37 0.52 114.53 6.27 23.25 144.05 1663.36 735.85 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.77 34.11 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR COLUMN 1.57 71.57 572.53 735.19 (596 CF) A 0.00 0.00 0.00 0.00 71.57 71.57 500.97 735.10 0.00 0.00 0.00 0.00 71.57 71.57 429.40 735.02 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 0.00 71.57 71.57 214.70 734.77	20								
3.34 0.51 113.70 6.17 23.62 143.49 1806.85 735.94 3.37 0.52 114.53 6.27 23.25 144.05 1663.36 735.85 3.39 0.53 115.35 6.35 22.89 144.59 1519.31 735.77 3.41 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR CORRESPONDEN FOR CORRESPO	19								
3.37	18								
3.39	17								
3.41 0.54 116.09 6.44 22.55 145.09 1374.72 735.69 3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR STORM OR ST	16 15								
3.44 0.54 116.86 6.52 22.22 145.59 1229.64 735.60 3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR Company of the comp	15 14								
3.46 0.55 117.56 6.59 21.90 146.06 1084.04 735.52 3.48 0.56 118.28 6.66 21.59 146.53 937.98 735.44 3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR STORM OF STO	13								
3.48	12								
3.51 0.59 119.17 7.14 21.04 147.35 791.45 735.35 0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR STATE OF	11								
0.00 0.00 0.00 71.57 71.57 644.10 735.27 REQUIRED FOR A PRODUCTION AND ADDRESS OF A	10								
0.00 0.00 0.00 0.00 71.57 71.57 500.97 735.10 0.00 0.00 0.00 0.00 71.57 71.57 429.40 735.02 0.00 0.00 0.00 0.00 71.57 71.57 357.83 734.94 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 71.57 71.57 214.70 734.77	9								
0.00 0.00 0.00 0.00 71.57 71.57 429.40 735.02 0.00 0.00 0.00 0.00 71.57 71.57 357.83 734.94 0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 71.57 71.57 214.70 734.77	8		0.00	0.00			71.57	572.53	
0.00 0.00 0.00 71.57 71.57 357.83 734.94 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 71.57 71.57 214.70 734.77	7								
0.00 0.00 0.00 0.00 71.57 71.57 286.27 734.85 0.00 0.00 0.00 71.57 71.57 214.70 734.77	6								
0.00 0.00 0.00 71.57 71.57 214.70 734.77	5								
	4 3								
10.4.03 10.11 10.11 00.0 00.00 00.	2								
0.00 0.00 0.00 0.00 71.57 71.57 734.60	1								
0.00 0.00 0.00 11.01 11.01 11.01 134.00	1	0.00	0.00	0.00	0.00	11.31	11.51	11.37	134.00

REVIEW DRAWING

REVIEW FOR ION

CONSTRUCTION

CONSTRUCTION

PLOT DATE: 09.20.24

If Q_a is less than $Q_{act\,full}$ discharge is limited by orifice

	LOCATION		AREA				CA			TIME		INTENSITY DISC		DISCHAF	DISCHARGE PROFILE			DESIGN						10 Y	EAR	HGL	HGL √							
	STRUCTUI	RE LABEL	LANDSCAPE	PAVEMENT	ROOF	GRAVEL	INCR.	TOTAL	WEIGHTED C	INCR. C*A	CUM. C*A IN	TO IN PIPE	TOTAL	10 YEAR	100 YEAR	10 YEAR 10	OYEAR L	PIPE LENGTH	"Upstream" INVERT OUT	"Downstream'	' "Upstream" RIM	"Upstream" Cove		PIPE DIAMETER	PIPE DIAMETER	n VALUE	SLOPE	SLOPE	V FULL	PIPE CAPACITY	SLOPE	HEADLOSS IN PIPE	"Upstream" HGL ELEV.	Dist. Between Water Level and Rim
	UPSTREAM	DOWNSTREAM	sq ft	sq ft	sq ft	sq ft	acres	acres			r	nin min	min	in/hr	in/hr	cfs	cfs	ft	ft	ft	ft	ft	in	in	ft		ft/ft	%	ft/s	cfs	ft/ft	ft	ft	ft
			0.60	0.90	0.95	0.50	Α	Ат	C AVG	C*A		Ti Tp	Tc=Ti+Tp	i 10	j 100	Q10=C*i10*A100	=C*i100*	L					D COMP	D	D	n	S		V FULL	Q FULL	SF	Н	HGL	
REA4	WEST ROOF	AD-4B	852.00		1867.00	369.00	0.07	0.07	0.80	0.06	0.06	15 0.00	15.00	3.88	5.96	0.22	0.34																	
	AD-4B	AD-4A					0.00	0.07		0.00	0.06	0.00	15.00	3.88	5.96	0.22	0.34	36	738.58	738.31	741.58	2.08	4.04	8	0.67	0.010	0.0075	0.75%	3.90	1.36	0.0002	0.0071	739.25	2.33
	AB-4A	CB-4					0.00	0.00		0.00	0.00	15 0.00	15.00	3.88	5.96	0.00	0.00	25	738.21	735.02	741.58	2.45	0.00	8	0.67	0.010	0.1275	12.75%	16.07	5.61	0.0000	0.0000	738.88	2.70
REA 5	CB-4	CB-3A		1643.00			0.04	0.04	0.90	0.03	0.03	0 0.03	15.03	3.88	5.96	0.13	0.20	67	736.21	735.71	745.72	8.59	3.33	8	0.67	0.010	0.0075	0.75%	3.90	1.36	0.0001	0.0047	736.88	8.84
REA3	CB-3A	CB-3	1630.00	2780.00			0.10	0.14	0.79	0.08	0.11	0 0.29	15.31		5.92	0.44	0.67	38	735.61	735.42	741.13	4.27	6.23	12	1.00	0.013	0.0050	0.50%	3.21	2.52	0.0002	0.0058	736.61	4.52
	CB-3	UNGRND DET					0.00	0.14		0.00	0.11	0 0.20	15.51	3.84	5.90	0.44	0.67	11	735.33	735.27	741.23	4.65	6.22	12	1.00	0.013	0.0050	0.50%	3.21	2.52	0.0002	0.0017	736.33	4.90
REA 7	EAST ROOF	CB-2A		3340.00	931.00			0.10	0.91	0.09	0.09	15 0.00	15.00		-	0.35	0.53																	
REA 6	CB-2A	CB-2	231.00	2116.00	936.00		0.08		0.89		0.16	0.00	15.00	_	5.96	0.61	0.93	38	735.61	735.42	740.13	3.27	7.04	12	1.00	0.013	0.0050		3.21	2.52	0.0003	0.0111	736.61	3.52
	CB-2	UNGRND DET						0.17			0.16	0 0.20	15.20		5.94	0.61	0.93	11	735.33	735.27	740.92	4.34	7.03	12	1.00	0.013	0.0050		3.21	2.52	0.0003	0.0032	736.33	4.59
	UNGRND DET	MH-1						0.31			0.27	0 0.06	15.25		5.93	1.04	1.60	5	735.27	735.17	741.50	4.98	6.65	12	1.00	0.013	0.0200	2.00%	6.42	5.04	0.0009	0.0043	736.27	5.23
	MH-1	OCS-1						0.31		0.00		0 0.01	15.27		5.93		1.60	12	735.17	735.11	740.49	4.07	8.63	12	1.00	0.013	0.0050	0.50%	3.21	2.52	0.0009	0.0103	736.17	4.32
REA 10	OCS-1	CB-1	1152.00	22.00		42.00	0.03		0.60	0.02		0 0.06	15.33		5.92	1.11	1.70	89	735.02	734.57	740.34	4.08	8.82	12	1.00	0.013	0.0050		3.21	2.52	0.0010	0.0860	736.02	4.33
	CB-1	EX. CB M52						0.34				0 0.46	15.79		5.86		1.68	26	734.47	734.34	739.07	3.35	8.78	12	1.00	0.013	0.0050	0.50%	3.21	2.52	0.0009	0.0246	735.47	3.60
REA 9		AD-5B	336.00	24.00			0.01	_	0.62	+		15 0.00	15.00	3.88	<u> </u>		0.03		705.50	705.40	700.00				0.0=	0.045	0.00==	0.75%	0.00	4.00	0.000/	2 222	700.00	
REA 8	AD-5B	AD-5A	1542.00	910.00			0.06		0.71	+	0.05	0.00	15.00	_	5.96	 	0.27	22	735.59	735.43	738.20	1.69	3.71	8	0.67	0.010	0.0075		3.90	1.36	0.0001	0.0027	736.26	1.94
	AD-5A	AD-5					0.00			+	0.05	0 0.09	15.09	3.87	 		0.27	24	735.32	735.14	738.11	1.87	3.71	8	0.67	0.010	0.0075	0.75%	3.90	1.36	0.0001	0.0030	735.99	2.12
	AD-5	EX CB JENNETT					0.00	0.06		0.00	0.05	0 0.10	15.20	3.86	5.94	0.17	0.27	25	735.04	734.85	738.13	2.17	3.70	8	0.67	0.010	0.0075	0.75%	3.90	1.36	0.0001	0.0031	735.71	2.42

ZIEMNICK FOSTER ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837
Tel: 517.627.8068 www.zfengineering.com

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

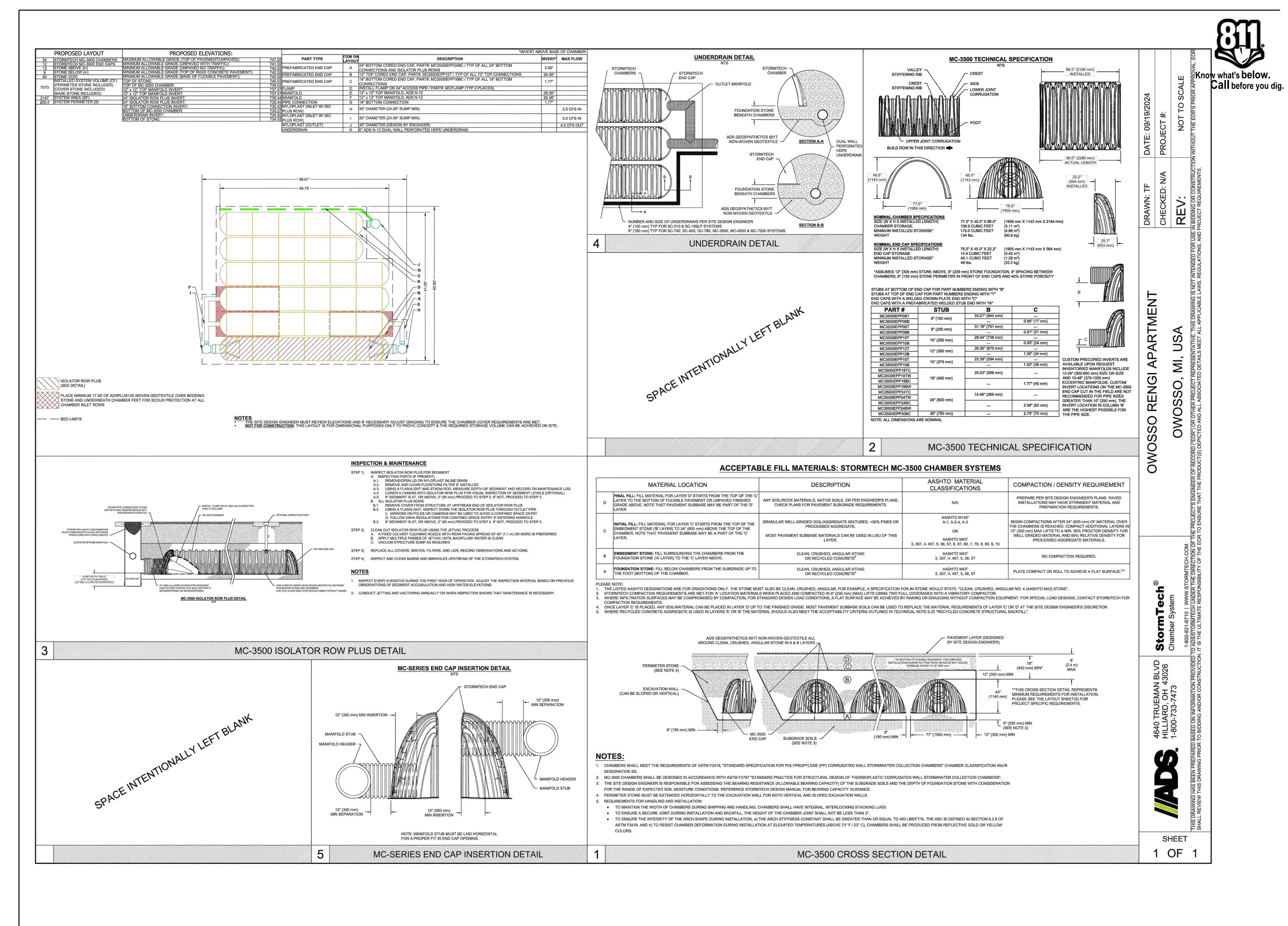
Location Map	PROJECT LOCATION
	2370003
50005	

Reviewed By: TZF Drafter: Drawing Scale: AS NOTED

issue Date:	issued for:

Issued for Regulatory Review

Project Name


Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI

Jennett Buildings Site Development

Drawing Title
STORMWATER CALCS

Drawing Number

C104

ZIEMNICK FOSTER ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837

REVIEW DRAWING

REVIEW DRAWING

FOR

NOT FOR

CONSTRUCTION

CONSTRUCTION

PLOT DATE: 09.20.24

Tel: 517.627.8068

www.zfengineering.com

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Location Map

PROJECT LOCATION

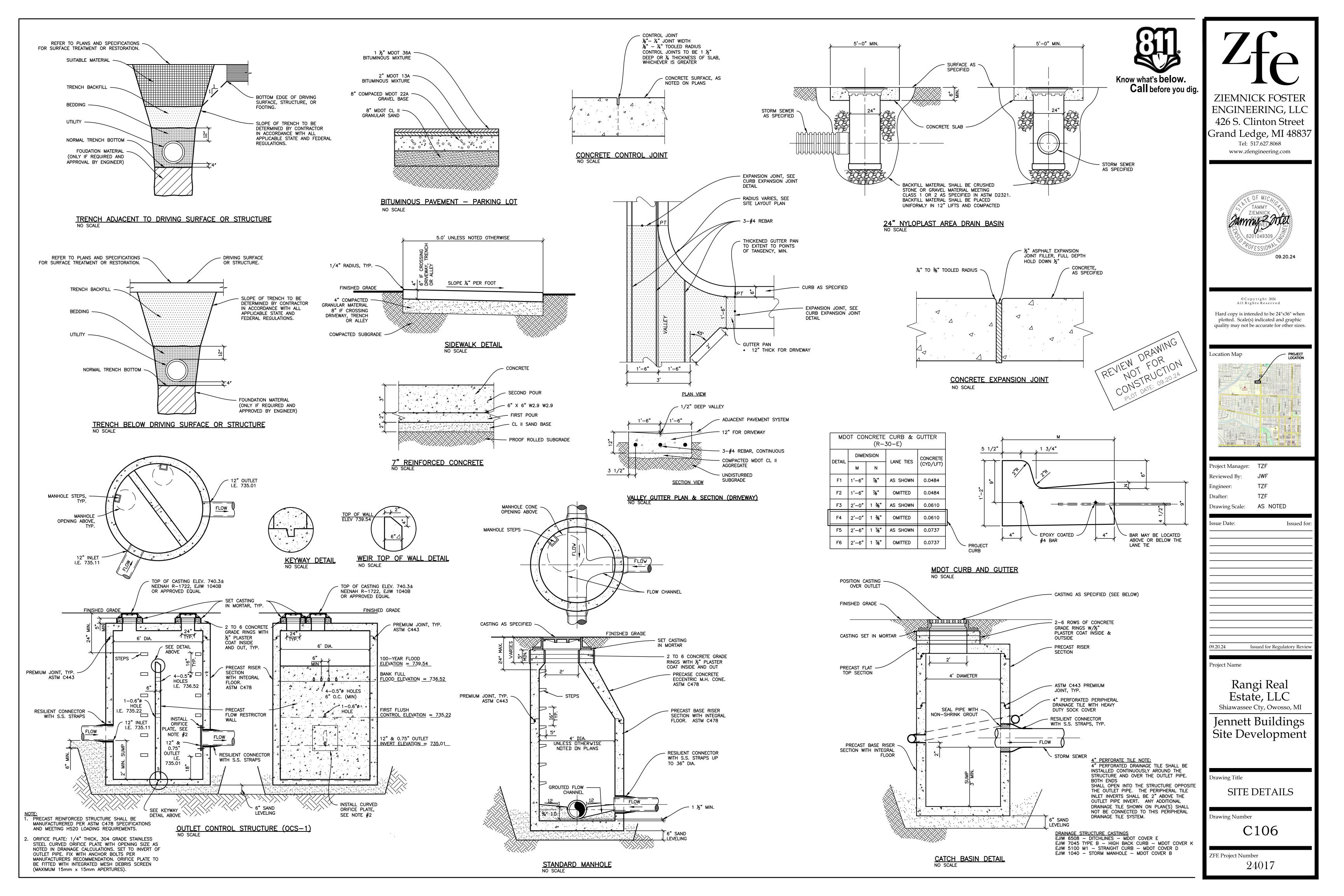
Project Manager: TZF
Reviewed By: JWF
Engineer: TZF
Drafter: TZF
Drawing Scale: 1" = 20'

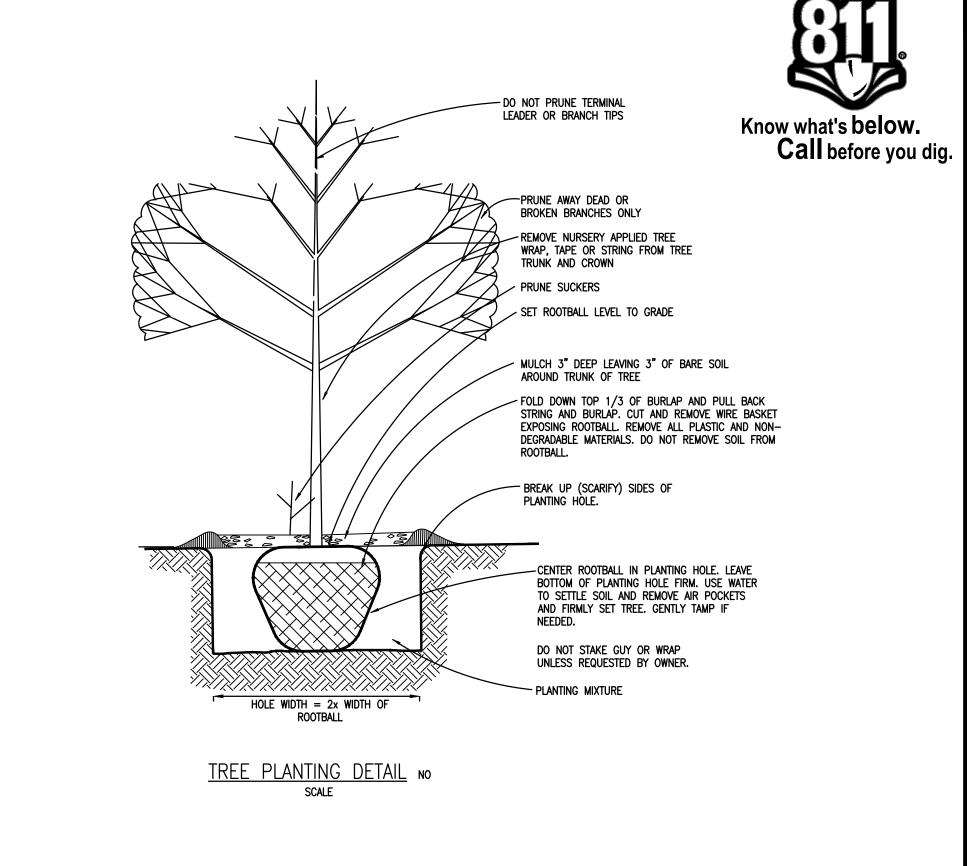
ssue Date:

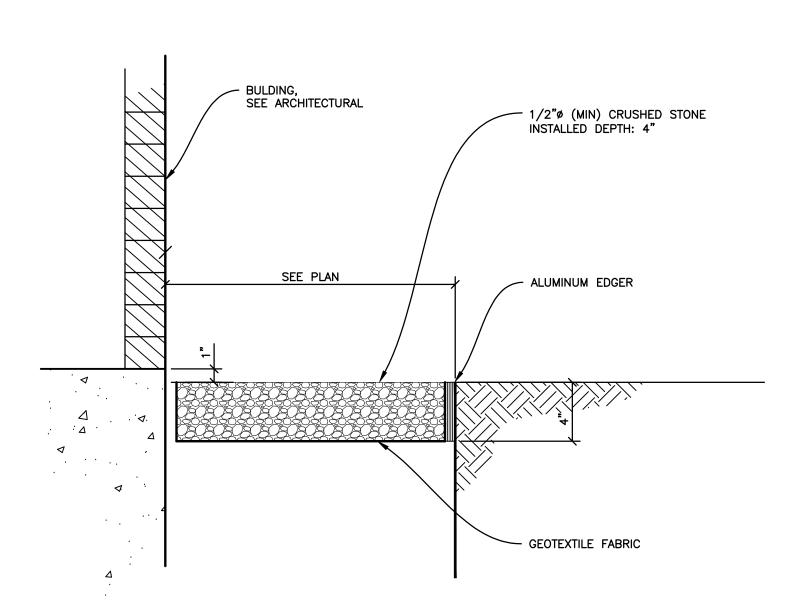
Issued fo

Issued for Regulatory Review

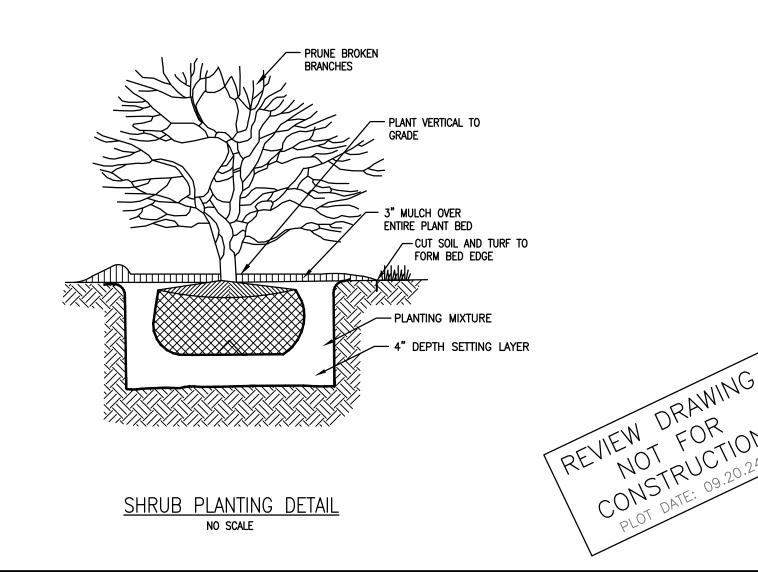
Project Name


Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI


Jennett Buildings Site Development


Drawing Title
ADS UNDERGROUNE
STORAGE SYSTEM

Drawing Number


C105

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Location Ma	ap	PROJECT LOCATION					
	S/GH '						
Maralyte							
		The Little of th					
# W Consers s							
	Disastray 201						

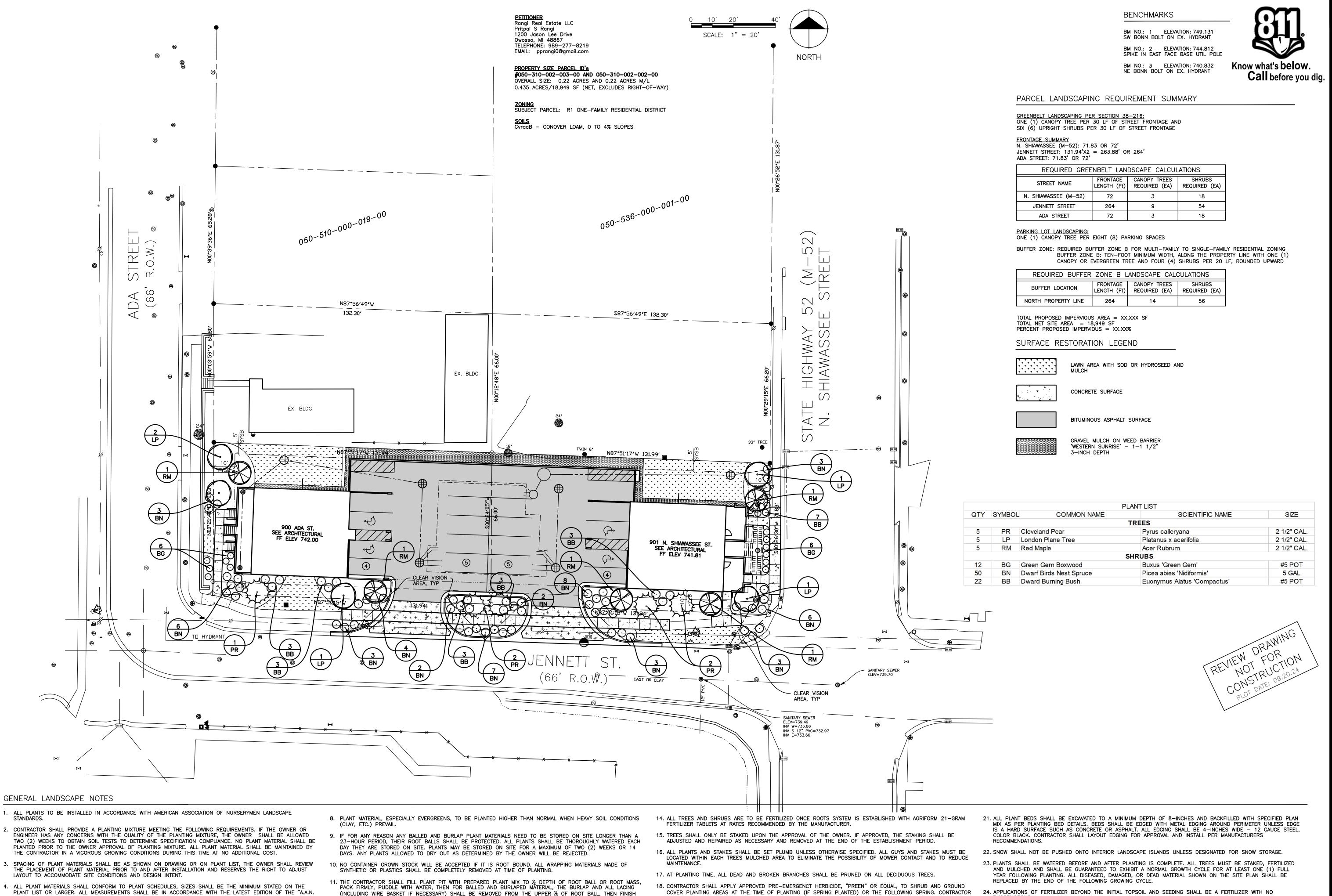
Project Manager: TZF
Reviewed By: JWF
Engineer: TZF
Drafter: TZF
Drawing Scale: AS NOTED

Issue Date:	Issued for:
	_

.20.24 Issued for Regulatory Review

Project Name

Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI


Jennett Buildings Site Development

Drawing Title

LANDSCAPE DETAILS

Drawing Number

C107

SHALL ENSURE THE PLANT MATERIALS ARE RESISTANT TO THE HERBICIDES PROPERTIES. HERBICIDE SHALL BE

ANTI-DESICCANT THE FIRST WINTER. THE OWNER SHALL BE NOTIFIED THREE (3) DAYS PRIOR TO THIS WORK.

20. ALL TREES, SHRUBS AND PERENNIAL GROUND COVER SHALL RECEIVE A MINIMUM DEPTH OF TWO (2) INCHES BARK

MULCH. WHERE PLANT BEDS MEET PAVEMENTS, LAWN OR STEEL EDGING, CUT THE GRADE TO ALLOW FOR MULCH

19. ALL EVERGREEN PLANTS SHALL BE SPRAYED ACCORDING TO MANUFACTURERS INSTRUCTIONS WITH AN

AND 2-INCH DROP FROM ADJOINING FINISH GRADE.

APPLIED ACCORDING TO THE MANUFACTURERS SPECIFICATIONS AND IN ACCORDANCE WITH HORTICULTURAL PRACTICES.

BACKFILLING ADDING SOLID FERTILIZER TO THE PLANT MIX, PACK FIRMLY AND WATER. A SAUCER SHALL BE PLACED

12. ALL DISTURBED LAWN AREAS SHALL BE RESTORED WITH 4-INCHES OF TOPSOIL, SPREAD, FINE GRADED, AND SEEDED AS SPECIFIED. PRIOR TO INSTALLATION OF TOPSOIL, LOOSEN SUBGRADE TO DEPTH OF 2-INCHES. THIS

13. TOPSOIL SHALL CONSIST OF FRIABLE, SHREDDED, AND SCREENED SOIL REASONABLY FREE OF GRASS, ROOTS,

WEEDS, STICKS, STONES OR OTHER FOREIGN MATERIALS. THE TOPSOIL MATERIAL SHALL BE APPROVED BY THE

AND BE CLASSIFIED AS A LOAM OR SANDY LOAM AS SPECIFIED IN THE "GUIDE FOR U.S.D.A. SOIL TEXTURAL

ENGINEER PRIOR TO PLACEMENT. SOIL COMPOSITION SHOULD CONTAIN AN ORGANIC CONTENT OF 2 TO 6 PERCENT

AROUND EVERY PLANT AND SHALL BE APPROVED PRIOR TO PLACEMENT OF ANY MULCH.

WORK SHALL BE INCIDENTAL TO THE PROJECT.

CLASSIFICATION".

STANDARDS FOR NURSERY STOCK."

FOR OWNER.

BEFORE DIGGING.

5. NO PLANT SHALL BE PUT INTO THE GROUND BEFORE ROUGH GRADING HAS BEEN FINISHED AND REVIEWED BY THE

6. FINAL PLANT LOCATIONS SHALL BE MARKED BY THE CONTRACTOR THREE (3) WORKING DAYS PRIOR TO PLANTING

7. ALL PLANTED PLANTS SHALL BEAR THE SAME RELATIONSHIP TO FINISHED GRADE AS THE PLANTS ORIGINAL GRADE

Zfc
t's below.

ZIEMNICK FOSTER ENGINEERING, LLC 426 S. Clinton Street Grand Ledge, MI 48837

Tel: 517.627.8068

www.zfengineering.com

©Copyright 2024 All Rights Reserved

Hard copy is intended to be 24"x36" when plotted. Scale(s) indicated and graphic quality may not be accurate for other sizes.

Location Map

PROJECT LOCATION

PROJECT LOCATION

Project Manager: TZF
Reviewed By: JWF
Engineer: TZF
Drafter: TZF
Drawing Scale: 1" = 20'

sue Date: Issued for

Issued for Regulatory Revie

Project Name

Rangi Real Estate, LLC Shiawassee Cty, Owosso, MI

Jennett Buildings Site Development

Drawing Title

LANDSCAPE PLAN

Drawing Number

25. ALL LANDSCAPED AREAS SHALL BE PROVIDED WITH AN UNDERGROUND IRRIGATION SYSTEM.

C108